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ABSTRACT

Decoherence is the main obstacle to the realization of quantum computers. Until recently it was thought that
quantum error correcting codes are the only complete solution to the decoherence problem. Here we present
an alternative that is based on a combination of a decoherence-free subspace encoding and the application of
strong and fast pulses: \encoded recoupling and decoupling" (ERD). This alternative has the advantage of lower
encoding overhead (as few as two physical qubits per logical qubit suÆce), and direct application to a number
of promising proposals for the experimental realization of quantum computers.
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1. INTRODUCTION

In the quest to construct large-scale quantum information processors, in particular quantum computers, deco-
herence is still the main obstacle to realization. Decoherence is the degradation of quantum information due to
inevitable interactions with the environment. Early skepticism1, 2 concerning the viability of quantum compu-
tation (QC) in the presence of decoherence was overcome by the discovery of quantum error correcting codes
(QECCs),3{9 that 
ourished into a comprehensive theory that incorporates all elements of quantum computa-
tion.10 A QECC relies on an encoding of quantum information into the state of several quantum bits (qubits),
and a closed-loop, active error diagnosis and correction procedure.11 In principle, it is possible to correct ar-
bitrary errors using suÆciently large QECCs.8 In practice, however, this may require a very large overhead,
especially in terms of qubit resources.9 This is troubling in light of the substantial diÆculties associated with
generating and controlling systems with very large numbers of qubits. In addition, the theory of QECCs is rather
abstract, in that it presumes that one can execute certain logical operations, but does not refer to the underlying
Hamiltonians governing speci�c physical systems. Hence it is of interest to explore alternatives to QECCs, that
are more economical in qubit resources, and that are direcly tailored to speci�c quantum computer proposals.

Here we review our recent progress in developing such an alternative, \encoded recoupling and decoupling"
(ERD),12{21 and report on some new results. ERD is based on a combination of encoding quantum information
into a decoherence-free subspace (DFS)22{25 (for a review see Ref. 26), and the application of fast and strong
dynamical-decoupling (or \bang-bang", BB) pulses.15, 18, 19, 21, 27{45 The DFS encoding provides a �rst layer of
protection against decoherence, while the BB pulses are used to eÆciently reduce the remaining decoherence. The
encoded \recoupling" part of ERD refers to the application of control operations that enact universal quantum
logic, in a manner that is fully compatible with the DFS encoding and the BB pulses, and takes into account the
experimentally available control resources, such as the underlying system Hamiltonian.13 The utility of ERD
as a general method for quantum simulation, universal QC, and decoherence suppression has also been stressed
and explored by Viola.37 Our work builds in part on earlier e�orts to combine universal QC with DFS encoding
(without BB pulses).32, 35, 46, 47

The structure of the paper is as follows. We begin in Section 2 with a brief formal summary of decoherence. We
then give in Section 3 a simple example of a DFS encoding, protecting against collective dephasing. Section 4
shows how to perform universal QC on this encoding. We then brie
y and formally review the dynamical
decoupling method, in Section 5. The methods are then combined in Sections 6,7, where we show how BB pulses
can eliminate decoherence sources beyond collective dephasing. In Section 8 we present a new and somewhat
surprising result: the elimination of o�-resonant transitions, that will typically be induced by BB pulses, via BB
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pulses. Section 9 shows how to combine all the pieces together, by including logic gates with the BB pulses.
Concluding remarks are presented in section 10.

2. DECOHERENCE

The dynamics of an open quantum system coupled to a bath is formally obtained from the time-ordered evolution

U(t) = T exp(�i
Z t

H(t0)dt0) (1)

under the combined system-bath Hamiltonian

H = (HS +HC)
 IB + IS 
HB +HSB

HSB =
X



S
 
B
 ; (2)

where I is the identity operator, HS (HB) is the internal Hamiltonian for the system (bath) alone, HC is an
externally applied control Hamiltonian, HSB is the system-bath interaction Hamiltonian, and the S
 (B
) are
operators acting on the system (bath). The S
 play the role of error generators in QC. Making the standard
assumption of initially decoupled system and bath, one traces over the bath degrees of freedom in order to obtain
the time-evolved reduced system density matrix:

�(t) = TrB [U(t) (�(0)
 �B(0))U
y(t)]; (3)

where �(0) [�B(0)] is the initial density matrix of the system [bath]. As is well-known, �(t) is in general a mixed
state: Tr[�(t)2] < 1, indicating that the environment has decohered the system (see, e.g., Ref. 48).

3. SIMPLE EXAMPLE OF DECOHERENCE-FREE SUBSPACES

We brie
y review the simplest example of a DFS. Suppose that a system of K qubits (two-level systems) is
coupled to a bath in a symmetric way, and undergoes a dephasing process. This can be described by the
system-bath Hamiltonian

Hcoll�deph
SB =

KX
j=1

�zj 
Bz (4)

where �zj is the Pauli-z matrix acting on the jth qubit and Bz is an arbitrary bath operator. Under this
interaction qubit j undergoes the transformation

j0ij ! j0ij j1ij ! ei�j1ij ; (5)

which (after TrB) puts a random phase � between the basis states j0i and j1i (eigenstates of �z with respective
eigenvalues +1 and �1). This can also be described by the matrix Rz(�) = diag

�
1; ei�

�
acting on the fj0i; j1ig

basis. As implied by (4), we assume that the phase has no space (j) dependence, i.e., the dephasing process is
invariant under qubit permutations. Since the errors can be expressed in terms of the single Pauli spin matrix �z
of the two-level system, this example is referred to as \collective phase damping", or \weak collective decoher-
ence".47 The more general situation when errors involving all three Pauli matrices are present, i.e., dissipation
and dephasing, is referred to as \strong collective decoherence" ,47 or just \collective decoherence".22, 24, 26 With-
out encoding a qubit initially in an arbitrary pure state j ij = aj0ij + bj1ij will decohere. This can be seen by
calculating its density matrix as an average over all possible values of �,

�j =

Z 1

�1

Rz(�)j ijh jRy
z(�) p(�)d�; (6)

where p(�) is a probability density, and we assume the initial state of all qubits to be a product state. For a

Gaussian distribution, p(�) = (4��)
�1=2

exp(��2=4�), it is simple to check that

�j =

� jaj2 ab�e��

a�be�� jbj2
�
: (7)
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The decay of the o�-diagonal elements in the computational basis is a signature of decoherence.

Let us now consider what happens in the two-qubit Hilbert space. The four basis states undergo the trans-
formation

j0i1 
 j0i2 ! j0i1 
 j0i2 (8)

j0i1 
 j1i2 ! ei�j0i1 
 j1i2 (9)

j1i1 
 j0i2 ! ei�j1i1 
 j0i2 (10)

j1i1 
 j1i2 ! e2i�j1i1 
 j1i2: (11)

Observe that the basis states j0i1 
 j1i2 and j1i1 
 j0i2 acquire the same phase. This suggests that a simple
encoding trick can solve the decoherence problem. Let us de�ne encoded states by j0Li = j0i1 
 j1i2 � j01i and
j1Li = j10i. Then the state j Li = aj0Li+ bj1Li evolves under the dephasing process as

j Li ! aj0i1 
 ei�j1i2 + bei�j1i1 
 j0i2 = ei�j Li; (12)

and the overall phase thus acquired is clearly unimportant. This means that the 2-dimensional subspace
DFS2(0) = Spanfj01i; j10ig of the 4-dimensional Hilbert space of two qubits is decoherence-free (DF). The
subspaces DFS2(2) = Spanfj00ig and DFS2(�2) = Spanfj11ig are also (trivially) DF, since they each acquire
a global phase as well, 1 and e2i� respectively. Since the phases acquired by the di�erent subspaces di�er, there
is decoherence between the subspaces.

For K = 3 qubits a similar calculation reveals that the subspaces DFS3(1) = Spanfj001i; j010i; j100ig and
DFS3(�1) = Spanfj011i; j101i; j110ig are DF, as well the (trivial) subspaces DFS3(3) = Spanfj000ig and
DFS3(3) = Spanfj111ig.

More generally, let
�K = number of 00s minus the number of 10s (13)

in a computational basis state (i.e., a bitstring) over K qubits. Then it is easy to check that any subspace
spanned by states with constant �K is DF, and can be denoted DFSK(�K) in accordance with the notation
above. The dimensions of these subspaces are given by the binomial coeÆcients: d � dim[DFSK(�K)] =

�
K
�K

�
and they each encode log2 d qubits.

The encoding for the \collective phase damping" model discussed here has been tested experimentally. The
�rst-ever experimental implementation of DFSs used the DFS2(0) subspace to protect against arti�ally induced
decoherence in a linear optics setting.49 The same encoding was subsequently used to alleviate the problem of
external 
uctuating magnetic �elds in an ion trap quantum computing experiment,50 and �gures prominently
in theoretical constructions of encoded, universal QC.13, 16, 21

4. ENCODED UNIVERSAL LOGIC GATES

Next we show how to perform universal QC on the encoding DFS2(0) = Spanfj01i; j10ig.

4.1. Single encoded-qubit gates

Let Xi; Yi; Zi denote the standard Pauli matrices �xi ; �
y
i ; �

z
i , acting on the ith physical qubit (we will use both

notations interchangeably). In Ref. 12 it was shown that for the code fj0Li = j01i; j1Li = j10ig the encoded
logical operations (involving the �rst two physical qubits) are

X12 =
1

2
(X1X2 + Y1Y2);

Y 12 =
1

2
(Y1X2 �X1Y2);

Z12 =
1

2
(Z1 � Z2): (14)
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These operations form an su(2) algebra (i.e., we think of them as Hamiltonians rather than unitary operators).
We use a bar to denote logical operations on the encoded qubits. In Refs.12{14 these logical operations were
denoted by T�12, � 2 fx; y; zg, and a detailed analysis was given on how to use typical solid-state Hamiltonians
(Heisenberg, XXZ, and XY models, de�ned below) to implement quantum logic operations using this DFS
encoding. E.g., the term X1X2 + Y1Y2 is the spin-spin interaction in the XY model, and Z1 � Z2 represents
a Zeeman splitting. A static Zeeman splitting and a controllable XY interaction can be used to generate a
universal set of logic gates. Similar conclusions hold when the XY interaction is replaced by a Heisenberg13, 51, 52

or XXZ interaction,14 or even by a Heisenberg interaction that includes an anistropic spin-orbit term.17 We
remark that, as �rst shown in Refs. 46, 47, the various types of exchange interactions can be made universal also
without any single-qubit terms (such as a Zeeman splitting), by encoding into three or more qubits,47, 53{56 a
result that has been termed \encoded universality".57

The two-qubit gate can be expressed as follows:

Uij(�; �i; �j) � exp(i�X�iX�j )

= cos �IiIj + i sin �X�iX�j ; (15)

where
X� � X cos�+ Y sin�; (16)

and I is the identity operator. In the context of trapped-ion QC,58 the phase �i is the phase of the driving laser
at the ith qubit, while � is proportional to the Rabi frequency, and can be set over a wide range of values.59

Introducing the operators

~Xij � 1

2
(XiXj � YiYj); ~Yij � 1

2
(YiXj +XiYj) (17)

(denoted Rxij , R
y
ij respectively in Refs. 12{14) we can express

Uij(�; �i; �j) = cos ��I + i sin �(cos��ijX ij + sin��ijY ij + cos�ij ~Xij + sin�ij ~Yij); (18)

where �ij = �i+�j . It is simple to check that ~Xij and ~Yij annihilate the code subspace fj0Li = j01i; j1Li = j10ig
and have non-trivial action (as encoded X and Y ) on the orthogonal subspace fj00i; j11ig. Therefore, upon
restriction to the DFS we can write:

Uij(�; �i; �j)
DFS7! �Uij(�;��ij )

= exp(i�X��ij ) = cos ��I + i sin �X��ij :

(19)

The fact that �Uij depends only on the relative phase ��ij is crucial in the trapped-ion context: this quantity
can be controlled by adjusting the angle between the driving laser and the interatomic axis, as well as by small
adjustments of the trap voltages (which, in turn, control the trap oscillation frequency, and hence the qubit
spacing), whereas it is much harder to control the absolute phase �i,

60, 61 and hence also �ij . This is why the
code subspace fj01i; j10ig enjoys a preferred status over the subspace fj00i; j11ig.

The Hamiltonians in Eq. (14) generate the logic operations (19):

exp(i�X12) = U12(�; �; �) = �U12(�; 0)

exp(i�Y 12) = U12(�; �; � +
�

2
) = �U12(�;

�

2
)

exp(i�Z12) = exp(i
�

4
Y 12) exp(i�X12) exp(�i�

4
Y 12)

= �U12(
�

4
; �=2) �U12(�; 0) �U12(��

4
; �=2): (20)

The third line follows from the elementary operator identity

X� = X cos�+ Y sin� = e�i�Z=2Xei�Z=2 (21)

which holds for any su(2) angular momentum set fX;Y; Zg, i.e., operators that satisfy the commutation relation
[X;Y ] = 2iZ (and cyclic permutations thereof), in particular also the encoded operators fX;Y ; Zg.
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4.2. Entangling gate between pairs of encoded qubits

It is a well-known requirement of QC that in order to enact a universal set of logic gates (that allow any unitary
transformation to be implemented) it is suÆent to be able to implement all single-qubit operations (as in the
previous subsection), and to entangle pairs of qubits.62 In this subsection we discuss the latter requirement.

In Ref. 61 the following unitary gate was introduced, which is particularly suitable for QC using trapped
ions:

U4 = exp(�i�
4
X�

1
X�

2
X�

3
X�

4
)

=
1p
2

�
I1I2I3I4 � iX�

1
X�

2
X�

3
X�

4

�
DFS7! 1p

2

�
�I12 �I34 � iX��

12
X��

34

�

= exp(�i�
4
X��

12
X��

34
): (22)

This gate can be used to entangle two DFS-qubits. It involves simultaneous control over two phase di�erences
��

12
;��34, and thus control over the motion of two pairs of qubits. The case ��

12
= ��34 = 0 was used in

Ref. 60 to demonstrate entanglement of four trapped-qubit qubits, but this choice is not unique.

For general exchange Hamiltonians a di�erent method is required. We review the encoded recoupling method
introduced in Ref. 13. The exchange interaction quite generally has the form

Hex =
X

�=x;y;z

X
i<j

J�ij�
�
i �

�
j (23)

=
X
i<j

J�ijR
x
ij + J+ijT

x
ij + Jzij�

z
i �

z
j ; (24)

where

T xij =
1

2

�
�xi �

x
j + �yi �

y
j

�
; Rxij =

1

2

�
�xi �

x
j � �yi �

y
j

�
; (25)

and J�ij = Jxij � Jyij :

The isotropic (Heisenberg) case corresponds to J�ij � Jij . The XY model is the case Jxij = Jyij , J
z
ij = 0 . The

XXZ model is the case Jxij = �Jyij 6= Jzij . A summary of QC proposals that fall into each category can be found
in Ref. 13. The free Hamiltonian is

H0 =
X
i

1

2
"i�

z
i ; (26)

where "i is the single-particle spectrum. In each instance of Hex (Heisenberg, XY , XXZ) one typically has
control over only one type of parameter out of the set fJ�ij ; "ig.

Let J�m � J�2m�1;2m (� = z;�), and ��m � ("2m�1 � "2m) =2. Let A and B be two angular momentum
operators satisfying su(2) commutation relations. Then if follows from Eq. (21) that the operation of \conjugating
by A",

CA Æ exp(iB) � exp(�iA�=2) exp(iB) exp(iA�=2)
= exp(�iB) (27)

causes B's sign to be 
ipped.

Consider now an XXZ-type Hamiltonian where the J+m parameters are controllable but ��m and Jzm are �xed.
For simplicity let us consider just the case J�m = 0. Then we can rewrite

H = H0 +Hex =

N=2X
m=1

��mT
z
m � JzmT

z
mT

z
m+1 + J+mT

x
m; (28)
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where we have omitted a constant term. The important point is now that T xm and T zm satisfy su(2) commutation
relations. Therefore by using recoupling through \conjugation by T xm" we can selectively turn on and o� the
single-encoded-qubit rotation T zm and the encoded-Ising interaction T zmT

z
m+1. This example of \encoded selective

recoupling" establishes that encoded universal computation in the XXZ model can be done using control over
the J+m parameters alone.

Next, consider the XY model, with controllable J+ij , but �xed "i. To implement encoded single-qubit op-
erations, we can use the same encoded recoupling method as for the XXZ model. As for encoded two-qubit
operations, we now no longer have the �zi �

z
j terms. Since the XY model with nearest-neighbor interactions can

be shown not to be universal,14 we turn on also next-nearest neighbor J+ij terms (these can still be nearest-
neighbor in a 2D hexagonal geometry). First note that CTx

12
Æ T x23 = i�z1�

z
2T

x
13. Now assume we can control

J+13; then, using conjugation by �=4: C 1
2
Tx13

Æ �CTx12 Æ T x23� = �z2(�
z
3 � �z1)=2. Since �

z
1�

z
2 is constant on the code

subspace it can be ignored. On the other hand, �z2�
z
3 again acts as �T z1 T z2 , i.e., as an encoded �z 
 �z. This

establishes universal encoded computation in the XY model.

Taken together, the results in this section show how universal QC can be implemented using qubits encoded
into a DFS o�ering protection against collective dephasing, while using only reasonable models of physically
controllable Hamiltonians. We now move on to a discussion of how to reduce additional sources of decoherence.

5. DYNAMICAL DECOUPLING PULSES

We brie
y review the dynamical decoupling method, introduced in Ref. 27, and further developed in Refs. 15, 18,
19, 21, 28{45. A set of \symmetrization" operations is chosen such that they form a discrete subgroup of the full

unitary group of operations on the Hilbert space of the system. Denote this group G = fVjgjGjj=1 where V1 = I .
The cycle time is Tc = jGj�t, where jGj is the number of symmetrization operations, and �t is the time that the
system evolves freely between operations under U0(t) � exp(�iHSt). The symmetrized evolution after a single
cycle is given by

U(Tc) =

jGjY
j=1

V y
j U0(�t)Vj � eiHeffTc ;

where the evolution under HSB+HB has been neglected during application of the pulses Vj , which quanti�es the
sense in which these pulses have to be fast and strong (for details see, e.g, Refs. 21, 27, 30, 44, 45). He� denotes
the resulting e�ective Hamiltonian, that can be computed to any order using the Magnus expansion.63 In the
BB limit one is interested in the evolution U(NTc) after N cycles, such that N !1 and �t! 0 while N�t is
�nite. As shown in Ref. 34 one can then retain only the �rst order Magnus term, approximating He� by

He� =
1

jGj
jGjX
j=1

V y
j HVj � �G(H): (29)

The map �G is the projector into the centralizer Z of G, de�ned as

Z(G) = fX j V y
j XVj = X; 8Vj 2 Gg:

Since the pulses gj are unitary the centralizer equals the commutant in this case:

Z(G) = fX j [X;Vj ] = 0; 8Vj 2 Gg:

It is clear that �G commutes with the adjoint action Vj � V y
j for all j, so that if G is generated by fI;HS ; S
g,

the evolution will proceed without the operators S
 a�ecting the system as errors: the evolution has been
symmetrized with respect to G.31 For a geometric interpretation of this symmetrization see Ref. 41, where it was
also pointed out that while the BB pulses should have the e�ect of rotating H to the vertices of a symmetric
object, they need in fact not form a group.
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6. CREATING COLLECTIVE DEPHASING CONDITIONS USING DECOUPLING
PULSES: REDUCING DECOHERENCE DURING STORAGE

One of the important advantages of the DFS encoding fj01i; j10ig is that it is immune to collective dephasing.
However, other sources of decoherence inevitably remain. In this and the following section, we algebraically
classify all additional decoherence e�ects and show how they can be eliminated.

6.1. Creating collective dephasing on a pair of qubits

First, let us analyze the e�ect of breaking the collective dephasing symmetry, by considering a system-bath
interaction of the form

H
deph(2)
SB = Z1 
Bz

1 + Z2 
Bz
2 (30)

where Bz
1 ; B

z
2 are arbitrary bath operators [compare to Eq. (4)]. This describes a general dephasing interaction

on two qubits. The source of such dephasing during storage can be long wavelength, randomly 
uctuating
ambient magnetic �elds,50 that randomly shift the relative phase between the qubit j0i and j1i states through
the Zeeman e�ect. The interaction can be rewritten as a sum over a collective dephasing term Z1 + Z2 and
another, di�erential dephasing term Z1 � Z2, that is responsible for errors on the DFS:

H
deph(2)
SB = (Z1 + Z2)
Bz

col + (Z1 � Z2)
Bz
dif : (31)

Here Bz
col = (Bz

1 +Bz
2 ) =2 and Bz

dif = (Bz
1 �Bz

2 ) =2. If Bz
dif were zero then there would only be collective

dephasing and the DFS encoding would o�er perfect protection. However, in general Bz
dif 6= 0, and the DFS

encoding will not suÆce to o�er complete protection.

The crucial observation is that, since Z1�Z2 / Z12 [recall Eq. (14)], the o�ending term causes logical errors
on the DFS.16 As shown in Refs. 15, 37, then the problem of Bz

dif 6= 0 can be solved using a series of pulses

that symmetrize H
deph(2)
SB such that only the collective term remains. To do so note that since the o�ending

term / Z12, it anticommutes with X12 = 1
2 (X1X2 + Y1Y2). At the same time X12 commutes with Z1 + Z2.

This allows us to 
ip the sign of the o�ending term by using a pair of ��=2 pulses in X12, while leaving only
the collective term. Evolution with the 
ipped sign followed by unaltered evolution leads to cancellation of the
o�ending term. Speci�cally:15

e�iHSB�e�i
�
2
X12e�iHSB�ei

�
2
X12 = e�i(Z1+Z2)
B

z
col2� ; (32)

or, in terms of gates:

e�iHSB� �U12(��
2
; 0)e�iHSB� �U12(

�

2
; 0) = e�i(Z1+Z2)
B

z
col2� ; (33)

where �Uij(�;��ij ) was de�ned in Eq. (19). This equation means that the system-bath coupling e�ectively looks
like collective dephasing at the end of the pulse sequence. Thus, the system is periodically (every 2�) projected
into the DFS.

In order for the the procedure described in Eq. (33) to work, the gate �U12(��
2 ; 0) must be executed at a

timescale faster than the cuto� frequency associated with the 
uctuating (magnetic) �elds causing the di�erential

dephasing term in H
deph(2)
SB .

6.2. Creating collective dephasing on a block of four qubits

So far we have discussed creation of collective dephasing conditions on a single DFS qubit. However, it is essential
for the reliable execution of an entangling logic gate to have collective dephasing over all four qubits participating
in the gate, even if only two are coupled at a time. A procedure for creating collective decoherence conditions
over blocks of 3; 4; 6 and 8 qubits was given in Ref. 15. Here we show how to do the same for a block of 4 qubits
with collective dephasing.
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Let us start with a general dephasing Hamiltonian on N qubits, and rewrite it in terms of nearest-neighbor
sums and di�erences:

Hdeph
SB =

NX
i=1

Zi 
Bi (34)

=

N=2X
j=1

(Z2j + Z2j�1)
B+
2j + (Z2j � Z2j�1)
B�

2j ; (35)

where B�
2j � (B2j �B2j�1)=2. As noted above, Z2j �Z2j�1 / Z2j�1;2j , so that to eliminate all nearest-neighbor

di�erences of the form (Z2j � Z2j�1) we can use the collective decoupling pulse Xnn =
NN=2

j=1 e
i�
2
X2j�1;2j :

e�iHSB�Xnne
�iHSB�Xy

nn = e�i2�
PN=2

j=1 (Z2j+Z2j�1)
B
+

2j ; (36)

or, in gate terms:

e�iHSB�

2
4N=2O
j=1

�U2j�1;2j(��
2
; 0)

3
5 e�iHSB�

2
4N=2O
j=1

�U2j�1;2j(
�

2
; 0)

3
5 = e�i2�

PN=2
j=1 (Z2j+Z2j�1)
B

+

2j :

The next step is to eliminate next-nearest neighbor di�erential terms. To this end let us rewrite the outcome of
the Xnn pulse in terms of sums and di�erences over blocks of four ions:

N=2X
j=1

(Z2j + Z2j�1)
B+
2j =

N=2X
j=1

[Z2j+2 + Z2j+1 + Z2j + Z2j�1]
B+;+
2j

+

N=2X
j=1

[(Z2j+2 � Z2j) + (Z2j+1 � Z2j�1)]
B+;�
2j ; (37)

where B+;�
2j � (B+

2j+2 � B+
2j)=2. The term in the �rst line contains only the desired block-collective dephasing

over 4 ions. The term in the second line contains undesired di�erential dephasing terms that we wish to eliminate.
But these terms once again have the appearance of encoded Z operators, between next-nearest neighbor ion pairs.

Therefore we need to apply a second collective pulse Xnnn =
NN=2

j=1 e
i �
2
X2j�1;2j+1ei

�
2
X2j;2j+2 , that applies encoded

X operators on these qubit pairs. At this point we are left just with collective dephasing terms on blocks of 4
qubits, as required:

e�i2�
PN=2

j=1 (Z2j+Z2j�1)
B
+

2j

2
4N=2O
j=1

�U2j�1;2j+1(��
2
; 0) �U2j;2j+2(��

2
; 0)

3
5 �

e�i2�
PN=2

j=1 (Z2j+Z2j�1)
B
+

2j

2
4N=2O
j=1

�U2j�1;2j+1(
�

2
; 0) �U2j;2j+2(

�

2
; 0)

3
5 = e�i4�

PN=2
j=1 (Z2j+2+Z2j+1+Z2j+Z2j�1)
B

+;+
2j :

(38)

This pulse sequence is important to ensure that collective dephasing conditions will prevail during the execution
of logic gates between DFS qubits.

7. REDUCTION OF ALL REMAINING DECOHERENCE ON A SINGLE DFS
QUBIT DURING LOGIC GATE EXECUTION

The reduction of di�erential dephasing errors, as in the previous subsection, is particularly relevant for storage
errors. However, this is only the �rst step. Additional sources of decoherence may take place during storage,
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and in particular during the execution of logic gates. It is useful to provide a complete algebraic classi�cation of
the possible decoherence processes. This will allow us to see what can be done using decoupling pulses. To this
end let us now write the system-bath Hamiltonian on two physical qubits in the general form

HSB = HLeak +HLogi +HDFS (39)

where

HDFS = SpanfZI + IZ

2
;
XY + Y X

2
;
XX � Y Y

2
; ZZ; IIg

HLeak = SpanfXI; IX; Y I; IY;XZ;ZX; Y Z;ZY g
HLogi = Spanf �X =

XX + Y Y

2
; �Y =

Y X �XY

2
; �Z =

ZI � IZ

2
g (40)

where I is the identity operator, XZ � X1Z2 (etc.), and where Span means a linear combination of these
operators tensored with bath operators. The 16 operators in Eq. (40) form a complete basis for all 2-qubit
operators. This classi�cation, �rst introduced in Ref. 16, has the following signi�cance. The operators in HDFS

either vanish on the DFS, or are proportional to identity on it. In either case their e�ect is to generate an overall
phase on the DFS, so they can be safely ignored from now on. The operators in HLeak are the leakage errors :
terms that cause transitions between states inside and outside of the DFS. A universal and eÆcient decoupling
method for eliminating such errors, for arbitrary numbers of (encoded) qubits was given in Ref. 18. Finally, the
operators in HLogi have the form of logic gates on the DFS. However, these are undesired logic operations, since
they are coupled to the bath, and thus cause decoherence.

In the previous subsection we showed how to eliminate the logical error �Z, but we see now that this was only
one error in a much larger set. To deal with the additional errors it is useful at this point to introduce a more
compact notation for the pulse sequences. We denote by [� ] a period of evolution under the free Hamiltonian,
i.e., U(�) � exp(�iHSB�) � [� ], and further denote

P � �U12(��
2
; 0) = exp(�i�

2
X12): (41)

Thus Eq. (33) can be written as:

exp[�i(Bz
1 +Bz

2)(Z1 + Z2)� ] = [�; P; �; P y]: (42)

As a �rst step in dealing with the additional errors, note that the symmetrization procedure [�; P; �; P y] can
in fact achieve more than just the elimination of the di�erential dephasing Z1 � Z2 term. Since X12 also
anticommutes with Y 12 =

1
2 (Y1X2�X1Y2) 2 HLogi, if such a term appears in the system-bath interaction it too

will be eliminated using the same procedure.

So far we have used a �
2X12 pulse. Interestingly, the Hamiltonian X12 can also be used to eliminate all

leakage errors.16 To see this, note that �U12(��; 0) = exp(�i�X12) = Z1Z2. This operator anticommutes with
all terms in HLeak. Hence it too can be used in a parity-kick pulse sequence, that will eliminate all the leakage
errors.

At this point we are left with just a single error: X12 
 B itself, in HLogi. Clearly, we cannot use a pulse
generated by X12 to eliminate this error. Instead, to deal with this error we need to introduce one more pulse
pair that anticommutes with X12, e.g., exp(�i�2Y 12) = �U12(��

2 ;
�
2 ).

Let us now see how to combine all the decoherence elimination pulses into one eÆcient sequence. First we
introduce the abbreviations

� � �U12(��; 0) = exp(�i�X12) = �y = PP

Q � �U12(��
2
;
�

2
) = exp(�i�

2
Y 12)

� � �U12(��; �
2
) = exp(�i�Y 12) = �y = QQ (43)
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As argued above, the � pulse � eliminates HLeak:

exp[�i(HLogi +HDFS)2� ] = [�;�; �;�]: (44)

Now let us discuss adding the extra pulses needed to achieve full decoherence elimination. The �=2 pulse P
eliminates �Y and �Z in HLogi. Combining this with the sequence for leakage elimination we have the sequence of
4 pulses:

e�i(HDFS+ �X
B �X )4� = [U(�)�U(�)�]P y [U(�)�U(�)�]P

= [�;�; �; P; �;�; �; P y]; (45)

(where we have used �P y = P , �P = P y).

If we wish to entirely eliminate decoherence then we are left just with getting rid of the logical error due to
X. To eliminate it we now combine with the �Y -direction, �=2 pulse, Q:

e�iHDFS8� = [U(�)�U(�)PU(�)�U(�)P y ]Qy[U(�)�U(�)PU(�)�U(�)P y ]Q

= [�;�; �; P; �;�; �; P y; Qy; �;�; �; P; �;�; �; P y; Q] (46)

which takes ten pulses. Unfortunately it is not possible to compress this further, since P yQ = (iX)(�iY ) =
iZ and P yQy = �iZ, neither of which cannot be generated directly (in one step) from the available gate
�Uij(�;��ij ) = cos ��I + i sin �X��ij .

8. ELIMINATION OF OFF-RESONANT TRANSITIONS

One important caveat in our discussion so far is that, because we need very strong and fast pulses, our gate
operation may become imperfect. Speci�cally, o�-resonant coupling may become important. This can cause
unitary leakage errors from the DFS. These can in turn be reduced using the methods in Refs. 64, 65. Here we
present an alternative and new method, that uses BB pulses generated in terms of the system Hamiltonian.

Consider an N -level system Hamiltonian

H0 =

NX
i=1

Ei jii hij

where the levels i = 1; 2 denote our qubit. If all parameters are �xed, the evolution U0(t) = exp(�iH0t) is always
on. If we turn on an interaction HI ; then the total Hamiltonian is H = H0 +HI ; which can be written as

H =

NX
i=1

Hii jii hij+
NX

i>j>2

(Hij jii hjj+ h:c:) +HL

where the leakage term is

HL = j1i
NX
i=3

H1i hij+ j2i
NX
i=3

H2i hij+ h:c:

Now note that

Uy
0 (t)HU0(t) =

NX
i=1

Hii jii hij+
NX

i>j=1

(e�i(Ei�Ej)tHij jii hjj+ h:c:):

Using this we now show how to eliminate each of the leakage terms one by one. First, we eliminate j1iH13 h3j+h:c:
by the BB sequence

2H 0 = H + U y
0 (

�

E1 �E3
)HU0(

�

E1 � E3
)
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The new HamiltonianH 0 does not contain j1iH13 h3j+h:c:Next, we eliminate j2iH 0
23 h3j+h:c: by U0(

�
E2�E3

);where

H 0
23 = exp(�i�(E2�E3)

E1�E3
)H23. We can clearly repeat this procedure so as to eliminate all leakage. The crucial

point is that since we have used the system Hamiltonian to generate BB pulses, o�-resonant transitions do not
take place: H0 has no matrix elements between di�erent levels.

A concern is how we to obtain Uy
0 (t) = exp(+iH0t). This problem is shared by other methods dealing with

the same problem.65 In principle it can be solved provided the level spacings are rationally related. Note in this
context that usually we do not need to eliminate all H1i, since H1i � H1i+1 and typically decrease exponentially
according to time-independent perturbation theory. We have assumed that there is no degeneracy. If there is,
then all degenerate transitions will be eliminated simultaneously, so the procedure is simpli�ed.

9. COMBINING LOGIC GATES WITH DECOUPLING PULSES

So far we have discussed computation using the encoded recoupling method (Section 4), and encoded decoupling
(Sections 6,7). We now put the two together in order to obtain the full ERD picture. At least two methods
are available for combining quantum computing operations with the sequences of decoupling pulses we have
presented above. For a general analysis of this issue see Ref. 35.

9.1. Fast + Strong Gates Method

The decoupling pulse sequences given in Sec. 7 \stroboscopically" create collective dephasing conditions at the
conclusion of each cycle. As noted above, this is equivalent to a periodic projection into the DFS. This property
allows for \stroboscopic" quantum computation at the corresponding projection times.35 Here the computation
pulses need to be synchronized with the decoupling pulses, and inserted at the end of each cycle. Because
of the conditions on the validity of the BB method,27 the amount of time available for implementation of a
logic gate is no more than the bath correlation time �c = 2�=!c. (An exception to this rule is the case of 1=f
noise.44) Assuming the dominant decoherence contributions not accounted for by the DFS encoding to come
from di�erential dephasing (setting the �c time-scale), and given that we already assumed that we can use pulses
with interval �t � �c, it is consistent to assume that we can then also perform logic gates on the same time
scale.

9.2. Fast + Weak Gates Method

There may be an advantage to using fast but weak pulses for the logic gates, while preserving the fast + strong
property of the decoupling pulses. To see how to combine logic gates with decoupling in this case, let us denote
by HS = X�iX�j the controllable system Hamiltonian that generates the entangling gate Uij(�; �i; �j) [recall
Eq. (15)]. Suppose �rst that we turn on this logic-gate generating Hamiltonian in a manner that is neither very
strong nor very fast, so that the system-bath interaction is not negligible while HS is on (this obviously puts
less severe demands on experimental implementation). Then the corresponding unitary operator describing the
dynamics of system plus bath is:

~U(t) = exp[�it(HS +HSB +HB)]: (47)

Now, if we choose HS so that it commutes with the decoupling pulses, then we can show that after decoupling

~U(t) 7! exp[�i2t(HS +HB)]; (48)

provided t is suÆciently small. Tracing out the bath then leaves a purely unitary, decoherence-free evolu-
tion on the system. To prove this, assume we have chosen t0 and the decoupling Hamiltonian H 0

S so that (i)
exp(�it0H 0

S)HSB exp(it0H 0
S) = �HSB , and (ii) [H 0

S ; HS ] = 0 . Then

~U(t)e�it
0H0

S ~U(t)e�it
0H0

S = ~U(t)e�it[HS+e
�it0H0

SHSBe
it0H0

S+HB ] (49)

= e�it(HS+HSB+HB)e�it(HS�HSB+HB) (50)

= e�f2it(HS+HB)+t
2([HSB;HS ]+[HSB;HB ])+O(t

3)g; (51)

where we have used the Baker-Campbell-Hausdor� formula, exp(�A) exp(�B) = expf�(A + B) + �2

2 [A;B] +
O(�3)g.
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Let us now show how to eÆciently combine logic operations and decoupling pulses. For simplicity consider
only the case where we can neglect the �X error, i.e., our decoupling sequence is the 4-pulse one given in Eq. (45).
Suppose we wish to implement a logical X operation, i.e., exp(�i�X12). Recall that this involves turning on

the Hamiltonian HX
S = 
XX�X�

DFS7! 
XX12 between two physical qubits. Because the decoupling pulses
P = exp(�i�2X12) and � = exp(�i�X12) are generated in terms of the same Hamiltonian, they commute
with HX

S while eliminating HSB (except for the terms in HSB that have trivial action on the DFS). Thus the
conditions under which Eq. (48) were shown to hold are satis�ed. This allows us to insert the logic gates into
the four free evolution periods involved in the pulse sequence of Eq. (45). Thus, the full pulse sequence that
combines creation of collective dephasing conditions with execution of the logic gate is:

e�it(
XX12+HDFS) = ~U(t=4)� ~U(t=4)P ~U(t=4)� ~U(t=4)P y; (52)

with ~U(t) = exp[�it(HX
S + HSB + HB)], and which, using the DFS encoding, is equivalent to the desired

exp(�i�X12). This involves 8 control pulses, 4 of which are of the fast+strong type (those involving P and �),
and 4 of which must be fast, but need not be so strong that we can neglect HSB .

If we wish to implement logical Y operation, i.e., exp(�i�Y 12), then we cannot now use P and �, since they
anticommute with Y 12 and will eliminate it. Instead we should use decoupling pulses generated in terms of Y 12,
which will also have the desired e�ect of eliminating HLeak, as well as �X and �Z logical errors, while commuting
with the Y logic operations (and for this reason can of course not eliminate �Y errors). These are just the Q and �

pulses de�ned in Eq. (43). In gate terms this implies turning on the HamiltonianHY
S = 
YX�X�+�=2

DFS7! 
Y Y 12

between two physical qubits. Thus:

e�it(
Y Y 12+HDFS) = ~U(t=4)�~U(t=4)Q ~U(t=4)�~U(t=4)Qy; (53)

with ~U(t) = exp[�it(HY
S + HSB + HB)], and which, using the DFS encoding, is equivalent to the desired

exp(�i�Y 12).

Finally, to generate single DFS-qubit rotations about an arbitrary axis we can combine Eqs. (52),(53) ac-
cording to the Euler angles construction.62 Given that Eqs. (52),(53) each take 8 pulses, the Euler angle method
will generate an arbitrary DFS-qubit rotation in at most 24 pulses.

Concerning gates that entangle two DFS-qubits, the situation may be more involved, since now the next-
nearest neighbor pulses in Eq. (38), that create the collective dephasing conditions on four qubits, do not all
commute with the U4 gate of Eq. (22). Therefore here we must resort to the strong + fast method of the previous
subsection, i.e., we need to synchronize the U4 pulses with the end of the decoupling pulse sequence. We do not
here analyze the situation with respect to the exchange Hamiltonian implementation of conditional logic gates.

Taken together, the methods described in this section provide an explicit way to implement universal QC in
a manner that o�ers protection against all sources of qubit decoherence, using a fast + strong (or fast + weak)
versions of logic gates.

10. DISCUSSION AND CONCLUSIONS

We have proposed a method of encoded recoupling and decoupling (ERD) for performing decoherence-protected
quantum computation. Our method combines an encoding into qubit-pair decoherence-free subspaces (each pair
yielding one encoded qubit), with sequences of recoupling and decoupling pulses. The qubit encoding protects
against collective dephasing processes, while the decoupling pulses symmetrize all other sources of decoherence
into a collective dephasing interaction. The recoupling pulses are used to implement encoded quantum logic
gates, either during or in between the decoupling pulses.

The dynamical decoupling method requires an exponential number of pulses if the most general form of
decoherence is to be suppressed, that can couple arbitrary numbers of qubits to the environment (total decoher-
ence24). This exponential scaling is avoided here by focusing on decoherence elimination inside blocks of �nite
size (e.g., at most four qubits) where arbitrary decoherence is allowed. However, we have implicitly assumed that
there are no decoherence processes coupling di�erent blocks. This is a reasonable assumption for most quantum
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computer implementation, provided the di�erent blocks can be kept suÆciently far apart until they need to be
brought together in order to execute inter-block logic gates. When this happens, ERD can still be eÆciently
applied on the temporarily larger block.

It may be questioned whether there is any advantage in using ERD compared to methods of active quan-
tum error correcting codes (QECC). Both ERD and QECC are capable of dealing with arbitrary decoherence
processes, and are fully compatible with universal quantum computation. There are two main advantages to
ERD: First, we need only two physical qubits per logical qubit, compared to a redundancy of �ve to one, in
order to handle all single-qubit errors in QECC.6 So far the most advanced experiments outside NMR, i.e., those
involving trapped ions, have used up to four qubits,60 so that this encoding economy is a distinct advantage for
near-term experiments. Second, our method is directly compatible with Hamiltonians describing a variety of
quantum computer proposals. On the other hand it is not clear how to directly use QECC given Hamiltonians
describing speci�c systems. These are general features of ERD: economy of encoding redundancy and use of only
the most easily controllable interactions. The disadvantage of ERD compared to QECC is that there does not
exist, at this point, a result analogous to the threshold theorem of fault tolerant quantum error correction. This
means that we cannot yet guarantee full scalability of ERD as a stand-alone method, because we do not yet
know how to compensate for imperfect pulses. However, in principle it is always possible to concatenate ERD
with QECC, as done, e.g., for DFS with QECC in Refs. 66, and then the standard fault tolerance results apply.
We expect that the theory of composite pulses67 will also play a key role in this further development of ERD.

We hope that the methods proposed here will inspire experimentalists to implement encoded recoupling and
decoupling in the lab, thus demonstrating the possibility of fully decoherence-protected quantum computation.
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