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A serious talk by one of you on imaging would probably
address:

a physics of imaging
a biology of systems
a processing of information

It would have a concrete result for:
a nuclear magnetic imaging
a positron emission tomography
2 computer axial tomography
e ultrasound

fa
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This will not be possible this morning. What might be
possible is to:

a review some new and old ideas in statistical signal
processing,

e bring a little more intuition for what you already
know,

a suggest new ways for you to think about what you
do, and perhaps suggest new directions you might
take.

e
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__With this in mind, let’s

e Review the geometry of signal processing in
low-dimensional subspaces.

a Establish some performance bounds, all of which
have a revealing geometry.

a Briefly comment on matched subspace detectors
and their application to spectrum analysis.

a Compare time-frequency distributions to scattering
functions for active imaging (beamforming).

a Present ongoing work on multi-rank Bartlett and
Capon beamforming to manage field mismatches,
and connect with recent work on subspace
expanding estimators based on conjugate gradients.

L
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~ Linear Models & Subspace Signal Processing

Apriori Algebra:

H y=z+n

n
14
x=Ha = hja+ ) ha;
=2
aj
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_Linear Models & Subspace Signal Processing

Apriori Algebra: Apriori Geometry:

H y=z+mn

< A>: “Noise” Subspace

IS e——1
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Linear Models & Subspace Signal Processing

Aposteriori Algebra:

I= E/_nHl + EHiﬁl + Py
(3-way resolution of identity)

* -1 *
EﬁlHl :I—,ll (—IZIPIJ'ilhl) blPIJil
P; =1-H,(HH)) 'H
(both idempotent)

Eynh =h & E;nH; =0
(perfect imaging)

S
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Linear Models & Subspace Signal Processing

Aposteriori Algebra: Aposteriori Geometry:

I= Eﬁlﬂl +EH1E1 + Py
(3-way resolution of identity)

% —1 *
Enn, = by (/llpllilﬁl) hlPIJ-il
Py =1-H, (HH) 'H;
(both idempotent)

Eymhy=h & EpuH; =0
(perfect imaging)

n
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Performance: Matched Subspace Filter

A * -1 * ]

ay = (BPy hy) hiPy,y {a‘= mPil,ll_u}
héy=Eymy o {hanh (0P h) i

mhy 1
HiPg by sin’(6))

MSE = Tr(error cov) =

It is the “nearness” of

______ mode 4, to interfering
<u> . | modes H, that accounts
for noise gain!
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Example
. g .3
Super-resolution of plane- i — ¢
waves in a linear array G —é
—
—L \
HORS Y )
N o°/L 1/sNR
var(a;) = =
@) = 126 e,
5 sin® (2n£Lsin¢)
G(0) = —F720-
sin (2TEX sin (1))

L 1(d_1) ¢
_L(A 2) SNR = L/c? & sin’0, =1—G*(¢)

. | Super-resolution does not work except at high SNR.
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Cramér-Rao Bound (CRB) L

This performance result is exact for a known estimator.
Sometimes the computation for a known estimator is elu-
sive, and at other times the estimator is unknown. Then
we would like to know how much information the data car-
ries about a parameter, without specifying how we extract
this info. If the answer is too pessimistic, we must re-
design our experiment.

var(d;) > 1/(SNRsin®6)
SNR = gisg, /c?
PJ_
sin?g, = LG
818,
ox
._ G= [&,Gl]; 8. = 30, - : sensitivity
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“ Matched Subspace Detectors

Question: Is there a significant £, effect in the model,
X - hlal +H1A1 +n,

or are we seeing only
y= H A +n?

Test: Hy:a,=0vs Hy:a;#0

The uniformly most powerful-invariant, and GLR, test is

L.
; = PH]X’
ZPps 2
sin?f = —A— z .
'Z
L O
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The geometry and invariances are these

a The detector measures sine? of the angle between
zand < - >,

o Any rotation or scaling of z leaves sin®8, invariant.
This is a good thing.

a This result extends in many ways to produce
. adaptive detectors.
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Example: Estimating Time-Frequency Distributionﬂ

o There is a version of the matched subspace
detector that illuminates much of what is done in
smoothed or multi-window spectrum analysis, and
Rihaczek or Wigner-Ville time-frequency analysis.

o < H >: Space of time-limited, band-limited signals,
approximately spanned by r =2TW independent
vectors.

e 72Tty (t — 1)

@ Spectral multi-
(1) windowism for o =0

------------------------------------------------------

e Time-frequency mul-
tiwindowism for 7y # 0
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Intermediate Recap:

o So far everything comes down to sines of angles
between subspaces.

o The subspaces change from problem to problem.
But the idea, itself, remains unchanged.

a Examples:
o for estimation, <h, > & <H; >

a forbounding, <g > & <G; >

o

)

o for detection, <z > & <Py h) >
o for time-freq. analysis, < Slepian >

B
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~ Active Beamforming

a The problem is to transmit a waveform through a
randomly time varying medium, and then measure
some characteristic, such as the scattering function

SF: Pss(T,v)8(1)8(V) = E|o(t,V)[?
a The measurement is assumed to be
y(t) = //G(T,v)eﬂ’w’x(t —1)dvdt

i.e., a linear combination of delayed, dopplered, &
complex scaled signals.

e The problem is to design the signal x so that the SF
B Pss may be estimated from y.
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Active Beamforming

a | will not go into the details of estimation, but instead
tell you that the best estimator that is quadratic in y
and delay and modulation invariant will be
attempting to estimate

(Fﬂ . RHH) (Af,Af) = (Vxx * PGG) (’C,V),
where T',, < V,, is a Fourier transform pair of
ambiguity (') and Rihaczek time-frequency dist. (V).

a V.(t, f) is the Rihaczek TF-dist. X(f)e/*™'x*(t), an
instantaneous inner product.

a The problem is to design the signal x for a desired V
orT.
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Active Beamforming

The reason this is interesting is that the story for Scatter-
ing Functions (SF), told this way, is dual to the story of
Time-Frequency Distributions (TFD):

@ SF: (Tu-Run) (Af,At) & (Vg * Pog) (T, V)

Design V,, (Rihaczek) or I',, (ambiguity) for
deconvolution of Vxx x Ps.

o TFD: (T - Rup) (Af,At) & (Vig * Psg) (¢, f)

Design Ps (time-freq. windows) or Ryy (ambiguity)
for convolution V,, * Psg.
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Examples:

CW: T(Af, A1) =8(Af) < Vult, f) =8(f)
© Poo(t, f) = [ Pss(t, f)dt : frequency marginal
Pulse: T (Af,Ar) =08(At) & Vi (t, f) =0(1)
Pss(t, f) = [ Pss(t, f)df : time marginal

The time-frequency picture is this:

“ior N f2m fot
cw: 2 Pulse: X{fy)ed 2l
e 7 = fot o
e - %1 (t)
~ ~ ".1/ \\‘
K (foe ot

L
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~ Passive Beamforming

a The problem is to image power as a function of
range-doppler-angle. To simplify our arguments,
let’s image only as a function of angle, ¢.

o We shall let 4, (¢) stand for the conventional Bartlett
beamformer and H; (¢) stand for the a matrix of
generalized sidelobe cancellers (GSCs) that are
orthogonal to A4, (¢).

o We shall approach the issue as a 2-channel
problem.

B
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2-Channel Model

1 BF: hi(o)

L GSC: Hi(¢)
There are two things going on here. We are

1. Imaging with beamformer #, to estimate that part of
y that looks like h,a,, originating from angle ¢.

2. Imaging with Generalized Sidelobe Canceller (GSC)
to estimate that part of y that looks like h,ay,

L originating from angle 6.
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- Two Common Beamformers

o The conventional Bartlett beamformer computes the

power
l M * * *
Py(9) = o7 X, 1B (@)y(m)I = ki ()R (0) = g7 (0)g, ()
m=1
o The Capon beamformer computes the power
1

hi(9)R-14,(0)

Fc(9) = = 8,(0)Pg()8, (9)

M
R = ZX m)y*(m) : sample covariance

g,(0) = R/h< ) & G() =R"*H,(9)
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The Geometry

Capon and GSC orthogonally resolve Bartlett. Thus
P-(9) < Pp(¢) (Kantorovich ineq.). If this is the picture for
a single angle ¢, then the picture as we steer through an-
gles ¢ is

o
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'The Geometry

97
o 6&@\

,We,i_“ G 4?

X‘\e“" <g(¢) >
|
1

_______

<G>

Pc(0) < Pg(d) (Kantorovich ineq.). If this is the picture for
a single angle ¢, then the picture as we steer through an-
gles ¢ is
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Connection to Filtering in Expanding Subspaces
a In the Capon (or MVDL) beamformer, the
computation in the denominator is
EfR—lhl =hw
w=R"'%, : Wiener filter
a But the filter w is known to lie in the L-dimensional
Krylov subspace
<K >=<h,Rhy,....RF'h >
which is known to terminate at dimension r << L for
many interesting problems.

a Moreover it is known how to use conjugate gradients
' to expand < K > from < h; > to <h,Rh; > tO ...
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~ To make a long story short...

e The matrix inversion can be avoided, and the Capon
beamformer may be written as

() 4y 1
(0= o (9)

where w(”) is computed recursively with CG’s.

a Bearing response pattern,
showing the evolution of the ‘
beamformer with r. 1

|
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To make a long story short... L

a The matrix inversion can be avoided, and the Capon
beamformer may be written as

() oy 1
O = o)

where w”) is computed recursively with CG’s.

a Bearing response pattern,

showing the evolution of the
beamformer with r.

P 5'
Vi |
Pt i
P { |
- i / | 3 ’
[ o .
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Q
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To make a long story short... L

e The matrix inversion can be avoided, and the Capon
beamformer may be written as

. 1
PO = )

where w(”) is computed recursively with CG’s.
e Bearing response pattern,

showing the evolution of the = — %2
beamformer with r. 1 !f; ;f‘
08 HER T
* i T
02 i g0\
L 02 0 02 04 éo.e 08 1 12 14
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To make a long story short...

e The matrix inversion can be avoided, and the Capon
beamformer may be written as

(r) !
Fe'(9) ==
¢ B (0)w()(0)
where w(") is computed recursively with CG’s.
o Bearing response pattern, T
showing the evolution of the = | ;‘ |
beamformer with r. « -

l 02 0 02 04 06 08 1 12 14
[0}
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~ To make a long story short...

e The matrix inversion can be avoided, and the Capon
beamformer may be written as

1
P (0) =
C
B (0)w()(0)
where w(") is computed recursively with CG’s.
e Bearing response pattern,
showing the evolution of the = =
beamformer with r. ' ariire
L 02 0 02 04 oo.e 08 1 12 14
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To make a long story short...

a The matrix inversion can be avoided, and the Capon
beamformer may be written as

() ay I
)= oW )

where w(”) is computed recursively with CG’s.

a Bearing response pattern,
showing the evolution of the -
beamformer with r.

=|

Il

i

S0 0 n
[k I

o Suggests that this way of
beamforming, allows for angle- ,,
dependent dimension reduc-,, , /N

L tion, which is a good thing. v N/ | S
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Recap

1. Angles between signal and interfering subspaces
determine performance of estimators (and
detectors).

2. Matched subspace detectors actually estimate
angles between measurements and subspaces.

3. Multi-window or smoothed spectrum analysis and
TF analysis can be seen as subspace detection ...
or ought to.

4. Active beamforming is dual to TF analysis.

B
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Recap

5. In passive beamforming, the powers out of the
Capon and GSC beamformers orthogonally
decompose the power out of the Bartlett
beamformer. This explains the higher resolution of
the Capon.

6. There is a connection between Capon beamforming
and conjugate gradient filtering, allowing for
reduced-dimensional beamforming with
angle-dependent dimensions.

7. Euclid and Pythagoras would be comfortable among
us.
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