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ABSTRACT 
Lockheed Martin and the University of Central Florida (UCF) are jointly investigating the use of a network of COTS video 
cameras and computers for a variety of security and surveillance operations. The detection and tracking of humans as well 
as vehicles is of interest. The three main novel aspects of the work presented in this paper are i) the integration of automatic 
target detection and recognition techniques with tracking ii) the handover and seamless tracking of objects across a network, 
and iii) the development of real-time communication and messaging protocols using COTS networking components. The 
approach leverages the previously developed KNIGHT human detection and tracking system developed at UCF, and 
Lockheed Martin’s automatic target detection and recognition (ATD/R) algorithms. The work presented in this paper builds 
on these capabilities for surveillance using stationary sensors, with the goal of subsequently addressing the problem of 
moving platforms. 

 
1. INTRODUCTION 

In recent years, the need for distributed surveillance systems has emerged in applications ranging from homeland defense to 
modern network centric warfare concepts. Various DoD efforts are on-going to develop and deploy such capabilities in the 
near future. The Army’s Future Combat Systems (FCS) program is an example of how network centric concepts are 
changing the battlefield. Military operations in urban terrain (MOUT) scenarios also call for distributed information 
gathering and processing capabilities. Video cameras abound in civilian life wherever security is of interest (e.g. in 
commerce, transportation, education, entertainment and so forth). The viability of distributed security and surveillance 
capabilities is enabled by the advent of low-cost cameras, computers, and networking technology (both wired and wireless). 
Although the component technologies and the infrastructure for such systems already exists today, the challenge is in 
developing algorithms that work across multiple platforms, and addressing the bandwidth and communication issues. 

The goal of this effort is to take advantage of multiple cameras (with overlapping or non-overlapping fields of view) in 
order to monitor activity over a large area. The system must be able to handle both stationary and moving objects. While 
motion analysis can be used to detect vehicles and humans when they are moving, the ATD/R capability is required for 
detecting and initiation tracks when they are stationary, and recognizing the detected objects. The system must be able to 
detect, track and handed over moving objects between cameras in real-time. For seamless operation across platforms, this 
requires the position of the target in the next field of view (FOV) to be predicted. Based on an analysis of the location of the 
detections, and registration between the camera views, it becomes possible to depict the positions of the objects and their 
movements with respect to a site map, thus providing a global composite view of events. This can serve as a powerful 
monitoring tool by providing situational awareness over the site of engagement. 

The rest of the paper is organized as follows. Section 2 is an overview of the ATD/R process, and describes how targets are 
detected, and multiple views are brought together in a combined view of the world. Section 3 is an overview of the 
KNIGHT human detection and tracking system [1] developed at UCF. We describe in this section how the process is 
augmented to track across multiple FOVs. The integration of the ATD/R and tracking system and the highlights of the 
networking and communication process are discussed in Section 4, along with a description of initial results obtained. 
Finally, Section 5 provides a summary of the work performed to date, along with a discussion of the challenges and 
directions for future work. 
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2. TARGET DETECTION IN MULTIPLE VIEWS 

We first discuss the approach for detecting stationary vehicular objects (interchangeably referred to as targets). Various 
target detection and recognition methods may be used depending on the sensor type, range to target, resolution and other 
key driving parameters. The objective here is not to build a better ATD/R capability, but to extend the algorithms to work 
across multiple platforms. For convenience, we use the maximum average correlation height (MACH) Correlation Filtering 
approach [2] for target detection and classification. The basic concept of operation using correlation filters is shown in 
Figure 1. 

 
Figure 1: An input image is processed by a bank of correlation filters to detect and identify targets. The filter with the highest PSR 

determines the class of the object, and  the position of the correlation peak indicates its location. 

Essentially, the input test image is processed by a bank of linear correlation filters that are optimized to respond to the 
presence of a target by producing a peak at the corresponding location in the output image (also known as correlation 
plane).  Since correlation is a shift-invariant operation, the position of the peak always represents the location of the target, 
even when it is moving. Each filter is synthesized using representative training images to exhibit distortion tolerance over a 
limited range of orientations and signature variations. Thus multiple filters are required for every class to accommodate all 
possible distortions. For example in Figure 1, there are 72 correlation filters for every target to cover 18 aspect bins (each 
22.5 degrees wide) and 4 different signature types (for thermal images these conditions may be hot, cold, day and night 
signatures). A metric known as peak to sidelobe ratio (PSR) is used to measure the strength of the correlation peaks. The 
class of the target is declared to be the same as the filter which yields the highest PSR value. 

Figure 2 illustrates the concept of networking multiple “nodes”, each with a camera, processor and on-board ATD/R 
capability. The outputs of each node is received at a central “command and control” point  where the information is 
combined. For now, we assume that the sensors and the platforms on which they reside are stationary. Since bandwidth is 
limited, each node only reports the ATD/R results including pixel position of the detections. Using knowledge of the 
camera geometry, the location of the target in the sensor view can be converted to a common reference frame, and 
represented as a point on a site map or an aerial view of the region obtained using an overhead asset. This is further 
illustrated in Figure 3 where the image in the top window serves as the “site map” and the smaller windows at the bottom 
represent the three sensor views. The target is detected and recognized in each  sensor view, and its pixel position is 
reported. This data is collected at a central computer where the target coordinates are converted to a common reference 
frame and fused to depict the location of the target (represented in Figure 3 by the red square) on the site map or overhead 
image. When the target moves in the sensor views, the site map is update in real-time so that the target position can be seen 
moving on the site map. 
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Figure 2: Multiple platforms (sensors) are networked to a central computer where  ATD/R information is combined into a common 

reference frame. 

The main advantage of the process illustrated in Figure 3 is that an updated site map that depicts the combined information 
from multiple sources can be a valuable tool for situational awareness. While individual sensors have only a limited view of 
the world and may not be able to see around buildings and other obstructions, the combined information can be “dialed-up” 
by any of the nodes. This allows the local platforms to benefit from the information observed by others in the network. It 
also allows the command and control center to have a cohesive picture of the battlefield based on multiple observations. 

 

 
Figure 3: The views from the 3 separate nodes (shown at the bottom) are processed locally by an ATD/R, and the position of the target is 
reported. This data is collected at a central computer where the target coordinates are converted to a common reference frame and fused to 

depict the location of the target on a site map (or overhead image). 

3. TARGET HAND-OVER AND TRACKING ACROSS MULTIPLE PLATFORMS 

Target tracking is an integral and important part of a surveillance system. We first provide a brief overview of the KNIGHT 
tracking system [1] designed for single camera systems, and then describe its extension to tracking across multiple FOVs. 
KNIGHT is a 'smart' surveillance system that detects important changes, events, and activities using computer vision 
techniques, flags significant events, and presents a summary in terms of key frames and textual description of activities to a 
monitoring officer for final analysis and response decision. The system is robust to illumination changes and weather 
conditions. KNIGHT has been installed at four locations in the downtown Orlando area which has Orange Avenue as its 
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primary street, and is currently being field tested. The system employs single camera, and works in real time. KNIGHT 
consists of four main modules, three of which are shown in Figure 4: object detection and shadow removal, tracking object 
classification and activity detection.  

Specifically, we view tracking as a region correspondence problem where performance is affected by noisy background 
subtraction, change in the size of regions, occlusion and entry/exit of objects. For these reasons traditional approaches 
cannot be directly applied to tracking humans. To achieve correct correspondence, we have developed a solution based on 
linear velocity, size and distance constraints. Furthermore, most of the surveillance systems do not tackle the problems in 
tracking caused by shadows. To address this issue, we employ a shadow detection approach based on similarity of 
background and shadow regions.  

In addition to tracking moving objects, we believe that motion based classification helps to reduce the reliance on the spatial 
primitives of the objects and offers a robust but computationally inexpensive way to perform classification. We have 
devised a solution to this problem using temporal templates. Temporal templates are used for classification of moving 
objects. A temporal template is a static vector image in which the value at each point is a function of motion properties at 
the corresponding spatial location in the image sequence. Motion History and Motion Energy images are examples of 
temporal templates, proposed by Bobick and Davis [3]. Motion History image is a binary image with a value of one at every 
pixel where motion occurred. In Motion History image pixel intensity is a function of temporal history i.e. pixels where 
motion occurred recently will have higher values as compared to other pixels. These images were used for activity 
detection. We have defined a specific Recurrent Motion template to detect repeated motion. Different types of objects yield 
very different Recurrent Motion Images (RMI's) and therefore can easily be classified into different categories on the basis 
of their RMI. We have used the RMIs for object classification and also for detecting carried objects. 

 
Figure 4: A overview of the KNIGHT motion based detection and tracking system for humans and vehicles. Additional details can be 

found at http://www.cs.ucf.edu/~vision/projects/Knight/Knight.html 

Tracking across multiple fields of view 

To track objects successfully in multiple cameras, one needs to establish correspondence between objects detected and 
tracked in each camera. Our system is able to discover spatial relationships between the camera FOVs and use this 
information to correspond between different perspective views of the same person. We employ a novel approach of finding 
the limits of FOV of a camera as visible in the other cameras that is very fast compared to conventional camera calibration 
based approaches. Using this information, when a person is seen in one camera, we are able to predict all the other cameras 
in which this person will be visible. Moreover, we apply the FOV constraint to disambiguate between possible candidates 
for correspondence.  
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When tracking is initiated, there is no information provided about the FOV lines of the cameras. The system can, 
however, find this information by observing motion in the environment, as illustrated in Figure 5. Whenever there is an 
object entering or exiting one camera, it actually lies on the projection of the FOV line of this camera in all other ones in 
which it is visible. Suppose that there is only one target. Then, when it enters the FOV of a new camera, we find one 
constraint on the associated line. Two such constraints will define the line, and all constraints after that can be used in a 
least squares formulation. In an earlier paper [4], it was demonstrated that the initialization of FOV lines by one person 
walking in the environment for about 40 seconds was sufficient to initialize the lines. These lines were then used to 
resolve the correspondence problem between cameras. However it is not always possible to have only one target moving 
in the scene. When multiple targets are in the scene and if one crosses the edge of FOV, all targets in other cameras are 
picked as being candidates for the projection of FOV line. Since the false candidates are randomly spread on both sides 
of the line whereas the correct candidates are clustered on a single line, correct correspondences will yield a line in a 
single orientation, but the wrong correspondences will yield lines in scattered orientations. We can then use Hough 
transform to find the best line in this case. This method needs more points for a reliable estimate of the lines and therefore 
takes longer time to set up correctly. Additional constraints derived from categorization of objects and their motion may be 
used to reduce the number of false correspondences, thus reducing the time it requires to establish the lines.  
 

 
Figure 5: The automatic calibration of three separate cameras with overlapping fields of view (FOVs) is shown. The FOV boundary lines 

are established by observing where moving objects visible in one camera simultaneously appear at the edge of another camera’s view. 
Places where this occur represent points on the boundaries of FOVs of other cameras that are visible in the current view. 

4. NETWORK INTEGRATION OF TRACKING AND ATD/R 

The ability to detect, track and recognize objects across a network has been demonstrated across both wired and wireless 
networks. The concept of a wireless peer-to-peer ad-hoc network is shown in Figure 6. This system was built and tested 
using laptop PCs, each equipped with a SynchrotechTM adapter and a wireless card from MeshLANTM. We also tested 
operations on a commercially available 802.11b wireless hub. A socket based communication over TCP/IP was used to 
network three PCs that acted as “clients” and a fourth one as the “server”. Network architecture is traditionally split into 
layers starting at the top application layer and going progressively down towards the hardware. The Transmission Control 
Protocol (TCP) forms the Transport layer and beneath it the Internet Protocol (IP) forms the Network layer. The Transport 
layer looks after assembling whole messages from individual packets whatever route they may take and the Network layer 
looks after getting individual packets across the network. If data packets are lost then TCP automatically attempts to retry 
the operation. It uses a simple acknowledgement interchange to ensure this. Within TCP/IP, the two communicating 
programs (server and client), allocate sockets and then connection is initiated by the client program. The server continually 
listens for connect requests and then chooses to accept a connection from them. This client-server model is an appropriate 
scheme for the distributed network as there are many clients making connection requests for information from one place 
(the server).  
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Figure 6: Example of a ad-hoc Peer-to-Peer network.  

The particulars of the interactions are as follows. The KNIGHT tracking system executes locally at each of the clients and 
the local tracking data is sent to the server. The server ensures that the tracked entities from the clients are de-conflicted and 
properly associated, and assigned global labels as described in Section 3. It is also essential to synchronize the frames 
processed at the clients so that the proper temporal correspondence can be made. The global labels are then received back at 
the clients and used for consistent labeling and display purposes. At startup, the server is in a “training mode” to establish 
the FOV boundaries based on the entry and exit of moving objects across the different FOVs. Thereafter, the main purpose 
of the server is to generate and return consistent labels for the tracked objects.  

                                 
Figure 7: ATR – Tracker interactions occur only at each client. The results of the ATR including class label and confidence are sent to 

the server. 

The ATR-Tracker interactions occur only at each client, as shown in Figure 7. When a moving object is detected1, a 64 x 
128 region of the image containing the tracked object is fed to the ATR for classification, and the result is used for 
generating the target call (class label) and confidence associated with that object, which is then sent to the server. When a 
new object enters the FOV of a client the target call sent by the ATR is used as the label. If however the object is already in 
track (i.e. it corresponds to an existing object) it gets the target call with the highest confidence (including those from 
previous classification results) is assigned to the object as its label.  

                                                 
1 For now we use the motion based detection to cue the ATR. The ability to detect stationary targets using the ATD/R and initiate 
tracks on them will be incorporated in future versions. 

KNIGHT 

Target Call & Confidence 

ATR Module 
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Figure 8 illustrates the interaction of the ATR and tracker across a network using models for a “Tank” and a “Mini”, a 
relatively smaller vehicle. The pictures represent snapshots of actual events that occurred during a real-time test and 
demonstration of the algorithms. As these objects move from right to left across the three FOVs, the ATR labels are 
correctly established and handed over across the clients via the server. The color of the box containing the target is set to 
green if it is recognized to be the Tank, blue when it is the Mini, and red if it cannot be recognized.  In this instance, the 
Tank is visible and correctly recognized in the left and middle camera views. The Mini is visible in all three views, but is 
too close to the edge in the left camera view to be recognized. It is however recognized correctly in the middle and right 
camera views. It should be also noted that the tracking labels P122 and P123 are consistently assigned by the server to the 
Tank and Mini across all three views.  

 
Figure 8: Snapshots from realtime demonstration show the detection, tracking, classification and handover of targets across a network of 

computers. 

5. SUMMARY AND FUTURE WORK 

We have shown that several existing components such as COTS computers and networking technology, video trackers and 
ATD/R algorithms can be brought together to address the need for wide area surveillance in a distributed processing 
environment. The baseline video tracking system (KNIGHT) has been extended to work across multiple platforms, 
achieving motion based target detection and handover between multiple FOVs in real-time. The tracking system is able to 
automatically establish where the camera FOVs intersect, and use this information to generate consistent labeling of objects 
across the network. This process was further augmented using a correlation based ATR algorithm to classify the tracked 
objects and assign unique labels. The interactions between the ATR and tracking algorithms were defined, and the 
algorithms was shown to work across a network of three client computers and a server using the TCP/IP protocol.  

The current system works on stationary platforms with fixed mounted cameras. Our goal is to extend the capability to 
moving platforms, especially unmanned air-vehicles. For simplicity, we envision that initially video data will be wirelessly 
transmitted to receiving computers on the ground where the processing will take place. In the future, it may be 
advantageous to process imagery aboard the platform and transmit only the salient results across the network. The greater 
challenge is to solve the FOV registration and the relative calibration between cameras for the moving platform scenario. 
While we seek a purely image based solution to this problem, we will also explore the potential benefits of using GPS and 
other information about the platforms and their positions relative to one another. 

In the future, we anticipate that the ability to register the field of views of cameras on moving platforms may potentially 
lead to novel simplification of the guidance and control required to coordinate the relative behavior of the platforms. There 
are also new evolving paradigms for collaborative target recognition [5] that require specific configuration of the platforms 
around the targets. Such algorithms heavily leverage the infrastructure outlined in this paper which has the ability to 
automatically calibrate multiple moving FOVs to associate and track objects across them.  
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