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ABSTRACT

The classical information capacity of channels that are subject to quantum Gaussian noise is studied. Recent work has

established the capacity of the pure-loss channel, as well as bounds on and a conjecture for the capacity of the lossy

channel with isotropic-Gaussian excess noise. This work is applied to the pure-loss free-space channel that uses multiple

Hermite-Gaussian (HG) or Laguerre-Gaussian (LG) spatial modes to communicate between soft-aperture transmit and

receive pupils, and to the lossy channel with anisotropic (colored) Gaussian noise.
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1. INTRODUCTION

A principal goal of quantum information theory is evaluating the information capacities of important communication

channels. To date, such capacities have only been found for a limited class of channels. In previous work we have

found the classical capacity of the pure-loss Bosonic channel,1 and shown that it is achieved by single-use coherent-state

encoding with joint measurements over entire codewords. Single-use coherent-state encoding was also used to obtain a

lower bound on the capacity of the thermal-noise channel,2, 3 which we have shown to be tight in the limits of low and

high noise levels. Furthermore, if our conjecture concerning the minimum output entropy of this isotropic Gaussian-noise

channel is correct,5 then single-use coherent-state encoding is capacity achieving.

In this paper we provide two extensions of our previous work. First, we find the capacity of the pure-loss free-space

channel that uses multiple Hermite-Gaussian or Laguerre-Gaussian spatial modes to communicate between soft-aperture

transmit and receive pupils. These mode sets are shown to have identical capacity versus transmitter power characteristics,

because they share a common set of modal transmissivities. Second, for single-mode communicationwe study the capacity

of the lossy Bosonic channel with anisotropic (colored) Gaussian noise. Here, under the assumption that our minimum

output entropy conjecture is correct, we are able to use a noise-whitening argument to find the channel capacity. We begin

our development with a brief review of prior classical capacity results for Bosonic channels with isotropic Gaussian noise.

2. BOSONIC CHANNELSWITH ISOTROPIC GAUSSIAN NOISE

We are interested in classical communication over Bosonic channels with propagation loss and Gaussian noise. It is

convenient to begin with a treatment at the single-mode level. In this case the channel input is an electromagnetic-field

mode with annihilation operator â, and its output is another field mode with annihilation operator â′. The descriptions of

this channel when multiple temporal and/or spatial modes are employed can be built up from tensor-product constructions

using the single-mode model. Neither the single-mode nor the multi-mode lossy channels constitute unitary evolutions, so

they are governed by trace-preserving completely-positive (TPCP) maps6 that relate their output density operators, ρ̂′, to
their input density operators, ρ̂.

The TPCP map EN
η (·) for the single-mode lossy channel can be derived from the commutator-preserving beam splitter

relation

â′ =
√

η â +
√

1 − η b̂, (1)
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in which the annihilation operator b̂ is associated with an environmental (noise) mode, and 0 < η < 1 is the channel
transmissivity. For the pure-loss channel, the b̂ mode is in its vacuum state; for the thermal-noise channel this mode is in a
thermal state, viz., an isotropic-Gaussian mixture of coherent states with average photon number N > 0,

ρ̂b =

∫
d2β

exp(−|β|2/N)

πN
|β〉〈β|. (2)

The extension of this model to anisotropic Gaussian noise—and the associated channel capacity analysis for that case—will
appear in Sect. 4.

The classical capacity of the single-mode lossy channel is established by random coding arguments akin to those
employed in classical information theory. A set of symbols {j} is represented by a collection of input states {ρ̂j} that are
selected according to some prior distribution {pj}. The output states {ρ̂′j} are obtained by applying the channel’s TPCP
map EN

η (·) to these input symbols. The Holevo information associated with priors {pj} and states {σ̂j} is given by,

χ(pj , σ̂j) = S


∑

j

pj σ̂j


 −

∑
j

pjS(σ̂j), (3)

where S(σ̂) ≡ −tr(σ̂ ln(σ̂)) is the von Neumann entropy. According to the Holevo-Schumacher-Westmoreland theo-
rem,7–9 the capacity of this channel, in nats per use, is

C = sup
n

(Cn/n) = sup
n
{ max
{pj ,ρ̂j}

[χ(pj , (EN
η )⊗n(ρ̂j))/n]}, (4)

where Cn is the capacity achieved when coding is performed over n-channel-use symbols and the supremum over n is
necessitated by the fact that channel capacity may be superadditive.

We have previously shown that the capacity of the single-mode, pure-loss channel whose transmitter is constrained to
use no more than N̄ photons on average is1

C = g(ηN̄) nats/use, (5)

where
g(x) ≡ (x + 1) ln(x + 1) − x ln(x) (6)

is the Shannon entropy of the Bose-Einstein probability distribution. This capacity is achieved by single-use random
coding over coherent states using an isotropic Gaussian distribution which saturates the transmitter’s bound on average
photon number. [Note that the optimality of single-use encoding means that the capacity of the single-mode pure-loss
channel is not superadditive.] This capacity exceeds what is achievable with homodyne and heterodyne detection,

Chom =
1

2
ln(1 + 4ηN̄) and Chet = ln(1 + ηN̄), (7)

although heterodyne detection is asymptotically optimal as N̄ → ∞. An analytical expression for the direct-detection
capacity corresponding to this single-mode case is not known, but this capacity has been shown to satisfy,10

Cdir ≤ 1

2
ln(ηN̄ ) + o(1) and lim

N̄→∞
(Cdir) =

1

2
ln(ηN̄), (8)

and so is dominated by (5) for ln(ηN̄) > 1.

For the pure-loss scalar channel in which the transmitter may use all frequencies ω ∈ [0,∞) of a single electromagnetic
polarization subject to an average power constraint P with all frequencies having the same channel transmissivity, we have
shown that the resulting channel capacity is1

CWB =

√
πηP

3�
nats/sec, (9)

which is π/
√

3 times higher than what can be achieved with homodyne or heterodyne detection. Once again, single-
use encoding over a coherent-state ensemble is employed, with low frequencies being used preferentially because of the
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average power constraint. As yet, there is no corresponding wideband capacity result for direct detection, because existing

results11, 12 ignore the frequency dependence of photon energy by constraining photon flux rather than power.

For the thermal-noise channel, i.e., the lossy Bosonic channel with isotropic-Gaussian excess noise, we have obtained

bounds on the channel capacity. For the sake of brevity, we will restrict our discussion to the single-mode case. A lower

bound on the single-mode capacity for this channel is easily obtained. We assume coherent-state encoding over single

channel uses with an isotropic Gaussian prior distribution. It then follows that

C ≥ g(ηN̄ + (1 − η)N) − g((1 − η)N). (10)

We believe that this single-use coherent-state encoding with an isotropic Gaussian prior achieves channel capacity for the

thermal-noise channel, i.e., we believe that the right-hand side of Eq. (10) gives the capacity of this channel.3 Because of

the following upper bound on the single-mode channel capacity

Cn/n ≤ max
{pj ,ρ̂j}

(S(ρ̂′)/n) − min
ρ̂j

(S(ρ̂′j)/n), where ρ̂′ ≡
∑

j

pjS(ρ̂′j) (11)

= g(ηN̄ + (1 − η)N) − min
ρ̂j

(S(ρ̂′j)/n), (12)

the proof of our conjecture is intimately related to the problem of determining the minimum von Neumann entropy that

can be realized at the output of the thermal-noise channel by choice of its input state.5 So far, among many other things, we

have shown that a coherent-state input leads to a localminimum in the output entropy, and we have shown that a coherent-

state input minimizes the integer-order Rényi output entropies.13, 14 A proof of our capacity conjecture would follow

immediately from the latter result were a rigorous foundation available for the replica method of statistical mechanics.

[The replica method has recently been applied to other problems in communication theory,15,16 so establishing its rigorous

basis would have additional import outside of statistical physics and Bosonic-channel communications.] Further support

for our output entropy and capacity conjectures comes from the suite of lower bounds that we have obtained on the thermal-

noise channel’s single-use output entropy.5 These bounds provide fairly tight constraints on any possible gap between the

channel’s minimum output entropy and the associated coherent-state upper bound on this quantity. Indeed these results

imply that coherent-state encoding approaches the C1 capacity at both low and high noise levels. We have also developed

numerical results that favor an even stronger conjecture, viz., that the output states resulting from coherent-state inputs to

the thermal-noise channel majorize the output states arising from all other inputs.13 This majorization conjecture, if true,

would immediately imply both the minimum output entropy and the capacity conjectures for the thermal-noise channel.

3. PURE-LOSS FREE-SPACE CHANNEL USING HG OR LG SPATIAL MODES

Although it serves a useful illustrative purpose, the wideband pure-loss channel with frequency-independent loss is not

a realistic scenario. Thus we have also studied the far-field, scalar free-space channel in which line-of-sight propagation

of a single polarization occurs over an L-m-long path from a circular transmitter pupil (area At) to a circular receiver

pupil (area Ar) with the transmitter restricted to use frequencies for {ω : 0 ≤ ω ≤ ωc � ω0 ≡ 2πcL/
√

AtAr }. This
frequency range is the far-field power transfer regime, wherein there is only a single spatial mode that couples appreciable

power from the transmitter pupil to the receiver pupil, and its transmissivity at frequency ω is η(ω) = (ω/ω0)
2 � 1.

Figure 1 shows the geometry, the power allocations versus frequency for heterodyne, homodyne, and optimal reception,

and their corresponding capacities versus normalized power, P0 ≡ 2π�c2L2/AtAr, when only this dominant spatial mode

is employed.1 Because far-field, free-space transmissivity increases as ω2, high frequencies are used preferentially for this

channel—unlike the case for frequency-independent loss—because the transmissivity advantage of high-frequency photons

more than compensates for their higher energy consumption.

We have also explored the near-field behavior of the pure-loss free-space channel,2 by employing the full prolate-

spheroidal wave function normal-mode decomposition associated with the propagation geometry shown in Fig. 1(a).17, 18

Near-field propagation at frequency ω = 2πc/λ prevails when Df ≡ AtAr/(λL)2, the product of the transmitter and
receiver Fresnel numbers, is much greater than unity. In this case there are approximately Df spatial modes with near-

unity transmissivities, with all other modes affording insignificant power transfer from the transmitter pupil to the receiver

pupil. In what follows we shall take another approach to the wideband capacity of the pure-loss free-space channel, by
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Figure 1. Capacity results for the far-field, free-space, pure-loss channel: (a) propagation geometry; (b) capacity-achieving power

allocations �ωN̄(ω) versus frequency ω for heterodyne (dashed curve), homodyne (dotted curve), and optimal reception (solid curve),
with ωc and �ωc/η(ωc) being used to normalize the frequency and the power spectra axes, respectively; and (c) wideband capacities of
optimal, homodyne, and heterodyne reception versus transmitter power P , with P0 ≡ 2π�c2L2/AtAr used for the reference power .

employing either the Hermite-Gaussian (HG) or Laguerre-Gaussian (LG) mode sets that are associated with the soft-

aperture (Gaussian-attenuation pupil) version of the Fig. 1(a) propagation geometry. Several benefits will be derived from

this approach. First, closed-form expressions become available for the modal transmissivities, as opposed to the hard-

aperture Fig. 1(a) case, for which numerical evaluations or analytical approximations must be employed. Second, the LG

modes have been the subject of a great deal of interest, in the quantum optics and quantum information communities,19

owing to their carrying orbital angular momentum. Thus it is germane to explorewhether they confer any special advantage

in regards to classical information transmission. As we shall see, in the next subsection, the modal transmissivities of the

LG modes are isomorphic to those of the HG modes. Inasmuch as the latter do not convey orbital angular momentum, it

is clear that such conveyance is not essential to capacity-achieving classical communication over the pure-loss free-space

channel.

3.1. Propagation Model: Hermite-Gaussian and Laguerre-Gaussian Mode Sets

In lieu of the hard-aperture propagation geometry from Fig. 1(a), wherein the transmitter and receiver pupils are perfectly

transmitting apertures within otherwise opaque planar screens, we now introduce the soft-aperture propagation geometry

of Fig. 2. From the quantum version of scalar Fresnel diffraction theory,20 we know that it is sufficient, insofar as this prop-

agation geometry is concerned, to identify a complete set of monochromatic spatial modes—for a single electromagnetic

polarization of frequency ω = 2πc/λ = ck—that maintain their orthogonality when transmitted through this channel. The
resulting two mode sets—i.e., the mode functions at the input and output of the Fig. 2 propagation geometry—constitute

a singular-value decomposition (SVD) of the linear propagation kernel (spatial impulse response) associated with this

geometry, which we will now develop.

Let ui(�x ), for �x a 2D vector in the transmitter’s exit-pupil plane, denote a frequency-ω field entering the transmitter
pupil that is normalized to satisfy ∫

d2�x |ui(�x )|2 = 1. (13)

The resulting field that leaves the transmitter pupil is taken to be

uT (�x ) = exp(−|�x |2/r2
T )ui(�x ), (14)

which represents a soft-aperture (Gaussian-attenuation function) spatial truncation. After free-space Fresnel diffraction

over an L-m-long path, uT (�x ) produces a field

uR(�x ′) =

∫
d2�x uT (�x )

exp(ikL + ik|�x − �x ′|2/2L)

iλL
, (15)
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in the receiver’s entrance-pupil plane, where �x ′ is a 2D vector in that plane. The receiver employs a soft-aperture (Gaussian-

attenuation function) entrance pupil, so that the field immediately after this pupil is

uo(�x
′) = exp(−|�x ′|2/r2

R)uR(�x ′). (16)

Thus, the input-output (ui(�x )-to-uo(�x
′)) relation for the Fig. 2 channel is

uo(�x
′) =

∫
d2�x ui(�x )h(�x ′, �x ), (17)

where

h(�x ′, �x ) ≡ exp(−|�x ′|2/r2
R)

exp(ikL + ik|�x − �x ′|2/2L)

iλL
exp(−|�x |2/r2

T ), (18)

is the channel’s spatial impulse response.

z = L

z = 0

( )iu x�

( )Tu x�

( )Ru x ��

( )ou x ��

Transmitter exit pupil
Gaussian-attenuation aperture

Receiver entrance pupil
Gaussian-attenuation aperture

x ��

x�

Figure 2. Propagation geometry with soft apertures.

The singular-value (normal-mode) decomposition of h(�x ′, �x ) is

h(�x ′, �x ) =

∞∑
m=1

√
ηm φm(�x ′)Φ∗

m(�x ), (19)

where

1 ≥ η1 ≥ η2 ≥ η3 ≥ · · · ≥ 0, (20)

are the modal transmissivities, {Φm(�x )} is a complete orthonormal (CON) set of functions (input modes) on the trans-
mitter’s exit-pupil plane, and {φm(�x ′)} is a CON set of functions (output modes) on the receiver’s entrance-pupil plane.
Physically, this decomposition implies that h(�x ′, �x ) can be separated into a countably-infinite set of parallel channels in
which transmission of ui(�x ) = Φm(�x ) results in reception of uo(�x

′) =
√

ηm φm(�x ′). Singular-value decompositions
are unique if their {ηm} are distinct. When degeneracies exist—i.e., when there are multiple modes with the same ηm

value—the SVD is not unique. In particular, a linear combination of input modes with the same ηm value produces
√

ηm

times that same linear combination of the associated output modes after propagation through h(�x ′, �x ). As we shall soon
see, owing to singular-value degeneracies, the HG and LG modes of the soft-aperture free-space channel are equivalent

mode sets.
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The spatial impulse response h(�x ′, �x ) has both rectangular and cylindrical symmetries. The Hermite-Gaussian modes
provide an SVD of this channel that has rectangular symmetry. With �x = (x, y) in Cartesian coordinates, the HG input
modes are as follows:

Φn,m(x, y) =

√
2(1 + 4Ωf)1/4

rT

√
π n! m! 2n+m

Hn

(√
2(1 + 4Ωf )1/4

rT
x

)
Hm

(√
2(1 + 4Ωf )1/4

rT
y

)

× exp

[
−

(
(1 + 4Ωf )1/2

r2
T

+ i
k

2L

)
(x2 + y2)

]
, for n, m = 0, 1, 2, . . . , (21)

whereHp(·) is the pth Hermite polynomial and

Ωf ≡ kr2
T

4L

kr2
R

4L
(22)

is the product of the transmitter-pupil and receiver-pupil Fresnel numbers. The modal transmissivities for the HG modes

are

ηn,m =

(
1 + 2Ωf − √

1 + 4Ωf

2Ωf

)n+m+1

, (23)

and the HG output modes are

φn,m(x′, y′) =

√
2(1 + 4Ωf)1/4

in+m+1rR

√
π n! m! 2n+m

Hn

(√
2(1 + 4Ωf )1/4

rR
x′

)
Hm

(√
2(1 + 4Ωf )1/4

rR
y′

)

× exp

[
−

(
(1 + 4Ωf)1/2

r2
R

− i
k

2L

)
(x′2 + y′2)

]
, for n, m = 0, 1, 2, . . . , (24)

where �x ′ = (x′, y′). Because channel capacity depends only on the modal transmissivities, it is worth noting that

Ωf =

∞∑
n=0

∞∑
m=0

ηn,m =

∫
d2�x ′

∫
d2�x |h(�x ′, �x )|2, (25)

where the second equality is a consequence of (19) and the first equality can be obtained either by summing the series

or evaluating the double integral. Far-field power transfer occurs when Ωf � 1, in which case η0,0 ≈ Ωf and all the

other modal transmissivities are insignificantly small in comparison. Near-field power transfer occurs when Ωf � 1, in
which case there are many modes that couple appreciable power from the transmitter pupil to the receiver pupil. However,

because the HG mode decomposition presumes soft-aperture pupils, the near-field modal transmissivities do not have the

abrupt near-unity to near-zero transition that occurs for the hard-aperture singular values.

The HG modes’ singular values have degeneracies, i.e., there q HG modes whose modal transmissivities equal ηq
0,0,

hence the HG-mode SVD of h(�x ′, �x ) is not unique. The Laguerre-Gaussian modes provide an alternative SVD for this
channel, one with cylindrical rather than rectangular symmetry. Using the polar coordinates �x = (r, θ) we have that the
LG input modes are

Φp,�(r, θ) =

√
2 p!

π(|�| + p)!

(1 + 4Ωf )1/4

rT

[√
2(1 + 4Ωf)1/4

rT
r

]|�|

L|�|
p

(
2(1 + 4Ωf)1/2

r2
T

r2

)

× exp

[
−

(
(1 + 4Ωf)1/2

r2
T

+ i
k

2L

)
r2 + i�θ

]
, for p = 0, 1, 2, . . ., and l = 0 ± 1,±2, . . . , (26)

where L
|�|
p (·) is the p|�|th generalized Laguerre polynomial. The corresponding modal transmissivities are given by

ηp,� =

(
1 + 2Ωf − √

1 + 4Ωf

2Ωf

)(2p+|�|+1)

, (27)
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from which it can be seen that the HG modes with n + m + 1 = q span the same eigenspace as the LG modes with
2p + |�| + 1 = q, and hence are related by a unitary transformation. The LG output modes are

φp,�(r
′, θ′) =

√
2 p!

π(|�| + p)!

(1 + 4Ωf )1/4

i2p+|�|+1rR

[√
2(1 + 4Ωf)1/4

rR
r′

]|�|

L|�|
p

(
2(1 + 4Ωf )1/2

r2
R

r′2
)

× exp

[
−

(
(1 + 4Ωf)1/2

r2
R

− i
k

2L

)
r′2 + i�θ′

]
, for p = 0, 1, 2, . . ., and l = 0 ± 1,±2, . . . , (28)

where �x ′ = (r′, θ′). As was the case for the HG modes, channel capacity when LG modes are employed depends only on
the modal transmissivities.

A single frequency-ω photon in the LG mode Φp,l(r, θ) carries orbital angular momentum �� directed along the prop-
agation (z) axis, whereas that same photon in the HG mode Φn,m(x, y) carries no z-directed orbital angular momentum.
The equivalence of the {ηp,l} and the {ηn,m} then implies that angular momentum does not play a role in determining the
ultimate—channel capacity—limit on classical information transmission over the free-space channel shown in Fig. 2.

3.2. Wideband Capacities with Multiple Spatial Modes

Here we shall address the wideband capacities that can be achieved over the pure-loss, scalar free-space channel shown

in Fig. 2 using either heterodyne detection, homodyne detection, or optimum (joint measurement over entire codewords)

reception. We will allow the transmitter to use multiple spatial modes—from either the HG or LG mode sets—and all

frequencies ω ∈ [0,∞) subject to a constraint, P , on the average power in the field entering the transmitter’s exit pupil. It
follows from our prior work1, 2 that the capacities we are seeking satisfy,

C(P ) = max
N̄q(ω)

∞∑
q=1

q

∫ ∞

0

dω

2π
CSM(η(ω)q , N̄q(ω)), (29)

where the maximization is subject to the average power constraint,

P =

∞∑
q=1

q

∫ ∞

0

dω

2π
�ωN̄q(ω), (30)

and

η(ω)q ≡
(

1 + 2Ωf − √
1 + 4Ωf

2Ωf

)q

(31)

is the modal transmissivity at frequency ω with q-fold degeneracy. In (29),

CSM(η, N̄) ≡




g(ηN̄), for optimum reception

ln(1 + ηN̄), for heterodyne detection

1
2 ln(1 + 4ηN̄), for homodyne detection

(32)

are the relevant single-mode capacities as functions of the modal transmissivity, η, and the average photon number, N̄ ,
for that mode. Regardless of the frequency dependence of η(ω) the single-mode capacity formulas for heterodyne and
homodyne detection imply that their wideband multiple-spatial-mode capacities bear the following relationship,

Chom(P ) =
1

2
Chet(4P ). (33)

Thus, only two maximizations need to be performed—both of which can be done via Lagrange multipliers—to obtain the

wideband multiple-spatial-mode capacities for optimum reception, heterodyne detection, and homodyne detection.

The results we have obtained, by performing the preceding maximizations, are shown in Fig. 3. Here we have plot-

ted the heterodyne detection, homodyne detection, and optimum reception capacities in bits/sec, normalized by ω0 =
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Figure 3.Wideband, multiple-spatial-mode capacities for the scalar, pure-loss, free-space channel that are realized with optimum recep-

tion, homodyne detection, and heterodyne detection. The capacities, in bits/sec, are normalized by ω0 = 4cL/rT rR, the frequency at

which Ωf = 1, and plotted versus the average transmitter power normalized by �ω2

0.

4cL/rT rR, the frequency at which Ωf = 1, versus the normalized power, P/�ω2
0 . Unlike the case seen in Fig. 1(c) for the

wideband capacities of the single-spatial-mode, far-field pure-loss channel—in which heterodyne detection outperforms

homodyne detection at high power levels—Fig. 3 shows that homodyne detection is consistently better than heterodyne

detection for the multiple-spatial-mode scenario. This behavior has a simple physical explanation. Consider first the single-

spatial mode wideband capacities. At low power levels, when capacity is power limited, homodyne detection outperforms

heterodyne detection because at every frequency it suffers less noise. On the other hand, at high enough power levels

single-spatial mode communication becomes bandwidth limited. In this case heterodyne detection’s factor-of-two band-

width advantage over homodyne detection carries the day. Things are different when multiple spatial modes are available.

In this case, increasing power never reaches bandwidth-limited operation; additional, lower transmissivity, spatial modes

get employed as the power is increased so that the noise advantage of homodyne detection continues to give a higher

channel capacity than does heterodyne detection.

Figure 3 shows that the wideband capacity realized with optimum reception, on the multiple-spatial-mode pure-loss

channel, increasingly outstrips that of homodyne detection with increasing transmitter power. This advantage indicates

that joint measurements over entire codewords—which are implicit in the Holevo information maximization procedure

that leads to the optimum-reception capacity—afford performance that is unapproachable with homodyne detection, which

is a single-use quantum measurement.

4. BOSONIC CHANNELSWITH ANISOTROPIC GAUSSIAN NOISE

We now return to the single-mode case, and generalize our previous work on lossy Bosonic channels with Gaussian excess

noise to include anisotropic (colored) noise. Some multi-mode results for the lossy channel with anisotropic-Gaussian

excess noise appear elsewhere.4

The channel mode we shall consider is the TPCP map, EVb
η (·), associated with the beam splitter relation (1), when the

noise mode, b̂, is in a zero-mean Gaussian state whose density operator, ρ̂b, is completely characterized by its quadrature

covariance matrix,

Vb ≡

 〈b̂2

1〉 〈b̂1b̂2 + b̂2b̂1〉/2

〈b̂1b̂2 + b̂2b̂1〉/2 〈b̂2
2〉


 , (34)

where b̂1 ≡ Re(b̂) and b̂2 ≡ Im(b̂) are the quadrature components of b̂. Isotropic Gaussian noise, as encountered in the
thermal-noise channel, has

Vb =
2〈b̂†b̂〉 + 1

4
I, (35)
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where I is the 2 × 2 identity matrix. All other valid covariance matrices imply that the noise is anisotropic.

In seeking the capacity of this channel, we shall assume that our conjectures about the capacity and minimum output

entropy of the thermal-noise (isotropic-Gaussian noise) channel are correct. Presuming the correctness of those conjectures,

we now have the following theorem.

THEOREM 4.1. The channel capacity of the Gaussian-noise channel EVb
η (·) is given by

C = g(ηN̄ + (1 − η)Nb) − g((1 − η)(2|Vb|1/2 − 1/2)), (36)

when the average photon number constraint on the transmitter satisfies N̄ ≥ Nthresh, where

N̄thresh ≡ 1

η

√
(V ′

11 − V ′
22)

2 + 4V ′
12

2 + V11 + V22 − 1/2, (37)

V
′ ≡ ηV + (1 − η)Vb, (38)

V ≡ 1

4

[ |µ + ν|2 2Im(µν)

2Im(µν) |µ − ν|2

]
, (39)

Nb ≡ 〈b̂†b̂〉 is the average photon number of the noise source, and the parameters µ and ν are chosen such that the squeeze
operator

Ŝ(ξ) ≡ exp

[
ζ

2
(e−iγ b̂2 − eiγ b̂†2)

]
, (40)

with ξ = ζeiγ , µ = cosh(ζ), and ν = eiγ sinh(ζ), whitens the Gaussian state ρ̂b.

Proof. We begin by establishing an upper bound on the capacity. From (12), which does not assume that the noise is

isotropic, we have that

Cn/n ≤ g(ηN̄ + (1 − η)Nb) − min
ρ̂j

(S(ρ̂′j)/n). (41)

As sketched in Fig. 4, we can use the squeeze operator Ŝ to find a thermal-noise channel, with TPCP map ENT
η (·), whose

output minimum output entropy is equal to that of our anisotropic noise channel. [In essence, this is the quantum equivalent

of the noise-whitening approach to communication through colored noise that is employed in classical communication

theory.] The average noise-photon number,NT , of this equivalent channel is

NT = (2|Vb|1/2 − 1/2), (42)

which, when used in conjunction with (41) and our minimum output entropy conjecture, shows that the right-hand side of

(36) is an upper bound on the channel capacity.

To show that the right-hand side of (36) is also a lower bound on the channel capacity when N̄ ≥ N̄thresh, we

evaluate the information rate achieved by a single-use squeezed-state code. Let ρ̂0
a = |0; µ,−ν〉〈0; µ,−ν| be the zero-

mean squeezed state whose quadrature-component covariance matrix is given by (39). Consider that random code in

which we transmit the displaced squeezed states,

ρ̂a(α) ≡ D̂(α)ρ̂0
aD̂†(α), (43)

where D̂(α) ≡ exp(αâ† − α∗â) is the displacement operator, that are selected with a zero-mean Gaussian probability
density function whose quadrature-component covariance matrix is denoted Va. Imposing the average photon number

constraint, 〈â†â〉 ≤ N̄ , assuming that N̄ ≥ N̄thresh, and applying a capacity result that is due to Holevo, Sohma, and

Hirota,21 we find that there is a squeezed-state code whose information rate equals the right-hand side of (36).4 This

implies that

C ≥ g(ηN̄ + (1 − η)Nb) − g((1 − η)(2|Vb|1/2 − 1/2)). (44)

Equations (41) and (44) provide coincident upper and lower bounds on the capacity, when N̄ ≥ N̄thresh, hence the proof

is complete.
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ĉ

b�ˆ

c�ˆ

�
)(ˆ �Sâ
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Figure 4. Noise-whitening construction of a thermal-noise channel, ENT
η , that is equivalent to the anisotropic-noise channel E

Vb
η . The

latter is the â-to-â′ channel; the former is the ĉ-to-ĉ′ channel. The whitening action of the squeeze operator Ŝ(ξ) puts the b̂′ mode into a
thermal state with average photon number NT = (2|Vb|

1/2 − 1/2).

There are two special cases of Theorem 4.1 that are worth discussing. First, it is easy to see that when

Vb =
2Nb + 1

4
I, (45)

EVb
η reduces to the thermal-noise channel EN

η . Theorem 4.1 then predicts N̄thresh = 0 and C = g(ηN̄ + (1 − η)N) −
g((1− η)N), in accord with our capacity conjecture for the thermal-noise channel. A more interesting special case occurs
when ρ̂b = |0; µ,−ν〉〈0; µ,−ν| is a squeezed state, with |ν| > 0, i.e., a pure-state anisotropic Gaussian noise. Here we
find

V
′ = V = Vb =

1

4

[ |µ + ν|2 2Im(µν)

2Im(µν) |µ − ν|2

]
, (46)

which yields

C = g(ηN̄ + (1 − η)|ν|2), for N̄ ≥ N̄thresh = |µν|/η + |ν|2. (47)

Note that this capacity is higher than that of the thermal-noise channel with the same N value. In other words, phase-

sensitive, pure-state Gaussian noise enhances, rather than degrades channel capacity for N̄ ≥ N̄thresh. Capacity behavior

below this average photon number threshold is not known, although partial results are available.4

5. CONCLUSIONS

We have reviewed recent work on the capacity of lossy Bosonic channels with isotropic Gaussian noise. We then extended

this prior work in two ways. First, for the pure-loss case, we determined the wideband capacity of the free-space channel

when multiple Hermite-Gaussian or Laguerre-Gaussian spatial modes are employed. These mode sets are related by

unitary transformations over their degenerate eigenspaces, i.e., they have isomorphic modal transmissivities. As a result,

they achieve the same capacities, and no fundamental advantage is conferred on classical communication by the fact that the

Laguerre-Gaussian modes carry orbital angular momentum. Second, for the single-mode case, we determined the capacity

of the lossy channel with anisotropic-Gaussian excess noise in the region above a threshold value on the average photon

number of the transmitter, under the assumption that our conjectured capacity for the thermal-noise channel is correct.
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