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ABSTRACT

A common frustration in signal processing and, more generally, information recovery is the presence of irreg-
ularities in the data. At best, the standard software or methods will no longer be directly applicable when
data are missing, incomplete or irregularly spaced (e.g., as with wavelets). Self-consistency is a very general
and powerful statistical principle for dealing with such problems. Conceptually it is extremely appealing, for it
is essentially a mathematical formalization of iterating common-sense “trial-and-error” methods until no more
improvement is possible. Mathematically it is elegant, with one fixed-point equation to solve and a general
projection theorem to establish optimality. Practically it is straightforward to program because it directly uses
the regular/complete-data method for iteration. Its major disadvantage is that it can be computationally in-
tensive. However, increasingly efficient (approximate) implementations are being discovered, such as for wavelet
de-noising with hard and soft thresholding. This brief overview summarizes the author’s keynote presentation on
those points, based on joint work with Thomas Lee on wavelet applications and with Zhan Li on the theoretical
properties of the self-consistent estimators.
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1. A MISSING-DATA PERSPECTIVE

In real-life statistical analysis, data are almost never complete. Putting it differently, if one is presented with a
“clean and complete” data set, it would be safe to assume that someone has manipulated the original raw data
to make it so. To a non-statistician, it might seem to be rather odd to worry about this “cleaning process”, as
many investigators would be more than happy if someone else has dealt with their “dirty data”, making them
easier to use, for example, ready for a standard software. But for those of us who make a living by dealing with
the collection and analysis of data, we all understand the importance of knowing how the data were collected,
and the potentially serious distortion of information the cleaning process can cause if the “data cleaner” is not
professionally trained. For example, common methods of imputing the missing values by some “best fit”, such
as sample averages or least-squares estimates, typically lead to serious under-estimation of noise level if a user is
unaware of this cleaning step or fails to take it into account in his/her analysis.1

The abundance and seriousness of missing data problems has been a driving force behind two lines of statistical
research, collectively known as the “missing-data perspective” or “incomplete-data perspective”.2 One line,
essentially started with the seminal work of Donald Rubin in 1976,3 is concerned with understanding when and
how a missing-data mechanism (i.e., the process that prevented us from observing the intended complete data)
distorts the final analysis if it is not dealt with properly. The other line is focussed on developing missing-data
methods, both statistical and computational, that would allow general practitioners to deal with missing data
problems by using essentially only the complete-data methods and software. Two of the most significant examples
are the EM algorithm (and its generalizations)4,5 and Multiple Imputation.6

A somewhat unexpected but exceedingly fruitful byproduct of the second line of research is that many hard
complete-data problems can be solved by viewing them as an incomplete-data problem for a larger “augmented”
complete-data problem.1,4 For example, an irregularly-spaced data set can be viewed as a regularly-spaced data
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set but with missing values. This observation has enabled us7,8 to develop wavelet methods with irregularly-
spaced data sets, as reviewed below. Although purposely making a problem larger (e.g., increasing dimension)
seems to be rather counter-productive, the central idea underlying it, known as the method of auxiliary variables
in statistical physics9 or data augmentation10–12 in statistics, has been an exceedingly fruitful technique for
efficient implementation of Markov chain Monte Carlo.13

Self-consistency is an old concept in statistics14 for dealing with missing data. It can be viewed as an early
seed for much of the later work in the second line of research and has been successfully used in a number of
contexts, the most famous of which are the Kaplan-Meier estimator15 (which actually stimulated the concept
of self-consistency14) and the EM algorithm itself.4 A more recent development was given by Tarpey and
Flury,16 who emphasized that self-consistency is “a fundamental concept in statistics”. The purpose of this
brief overview is to introduce the concept and method to some signal processing problems, including wavelet
regression, and more generally semi-parametric and non-parametric regression. The overview is based on joint
work on wavelet applications7,8 with my collaborator Thomas Lee of Colorado State University and Chinese
University of Hong Kong, and on-going theoretical work with my Ph.D. student Zhan Li at Harvard University.
A full paper on setting up a very general “Self-consistent Projection” framework for parametric, semi-parametric,
and non-parametric inference will be available shortly.

2. DEFINING SELF-CONSISTENT ESTIMATORS IN L2 SPACE

Self-consistent estimators can be defined in any space, but for simplicity of presentation, in this overview I will
focus on the L2 space. Indeed, this is the most commonly used space in statistics, and in general, because of the
ubiquitous use of variance and mean-squared errors in practice. The mathematical theory for L2 space is also
the simplest because it admits orthogonal projection. This is particularly relevant for a self-consistent estimator
because it is defined, as we shall see below, as a solution of a fixed-point equation based on a projection.

2.1 An Illustration via Linear Regression

Consider the simplest linear regression setting, where the signal is represented by βx with x being a known scalar
quantity and β to be estimated from the noisy data, which are linked to the signal via the usual regression model:

yi = βxi + ei, i = 1, . . . , n, (1)

where ei’s are identically and independently distributed noises with mean zero and variance σ2. The least-squares
estimator of β is given by

β̂n ≡ β̂n(y1, . . . , yn) =
∑n

i=1 yixi∑n
i=1 x2

i

. (2)

Imagine that a Mr. Littlestat was asked by his boss to fit a least-squares line to a dataset with n = 13,
but he had no knowledge of the least-squares method, so formula (2) was not available to him. Instead, he had
access to a “black-box” program that would compute (2) but only when n = 24 (hypothetical for this illustration
of course, but recall the standard requirements on the data configuration for fast wavelet computation). Is it
possible for him to use this black-box to compute what he needs, namely, β̂13?

At first sight, this seems to be a hopeless task, since the program simply would not run with 13 data points.
Out of desperation, Mr. Littlestat added 3 arbitrary data points. That is, he arbitrarily picked up three 3 new x

values – let’s label them {x14, x15, x16}, and then three corresponding y values – let’s label them {y(0)
14 , y

(0)
15 , y

(0)
16 }.

The program then ran and outputted an estimator of β, which we label as β̂
(1)
13 . Of course Mr. Littlestat knew

that this β̂
(1)
13 cannot be the β̂13 he was after. However, the output allowed him to draw the least-squares line,

i.e., y = β̂
(1)
13 x. This gave him an idea: why not adjust the three arbitrarily added data points, which are off the

line he had just drawn, to the line? That is, use {(xi, y
(1)
i ); i = 14, 15, 16}, where y

(1)
i = β̂

(1)
13 xi, instead of the

original three arbitrary points {(xi, y
(0)
i ); i = 14, 15, 16}? After all, these are fake data points to start with, and

by adjusting them to the line, his gut feeling was that the result should be closer to what he was looking for.
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He then ran the “black box” again, with this new updated 16-point data set. It gave a new estimate for
β, β̂

(2)
13 , which allowed him to draw a new line y = β̂

(2)
13 x. He then observed that the updated imputed points

{(xi, y
(1)
i ); i = 14, 15, 16} are, again, off the new line, but they are much closer to the line than the previous

points {(xi, y
(0)
i ); i = 14, 15, 16} had been to the previous line, y = β̂

(1)
13 x.

Encouraged, Mt. Littlestat repeated the above process several times, until the line stopped moving as far
as he could visually tell. He certainly did not have enough knowledge to know whether this “stopped” line is
actually what he was looking for, but his intuition told him that it must be something “good” because it cannot
be further improved upon given his resource, namely, the black-box for computing β̂16.

Indeed, what Mr. Littlestat obtained from his “trial-and-error” approach is the correct answer. This is
because what he did can be expressed mathematically as an iteration of the form

β̂
(t+1)
13 = β̂16(y1, . . . , y13, y

(t)
14 , y

(t)
15 , y

(t)
16 ), (3)

where the β̂16 function is given by (2) as a function of {y1, . . . , y16}, t indexes iteration, and y
(t)
i = β̂

(t)
13 xi (i =

14, 15, 16). Because of (2), the limit of (3), denoted by β̂13, must satisfy

β̂13 =
∑13

i=1 yixi + β̂13

∑16
i=14 x2

i
∑16

i=1 x2
i

.

But this is the same as β̂13 =
∑13

i=1 yixi/(
∑13

i=1 x2
i ), the least-squares estimate with 13 data points.

This, of course, is too remarkable to be just a mathematical coincidence. Rather, it is a consequence of
the self-consistency property of the least-squares estimator. Specifically, β̂N has the following property: for
any subset of n data points, where n < N , and, without loss of generality we assume it is the first n points
{y1, . . . , yn}, and as long as

∑N
i=n+1 x2

i > 0 (recall all design points xi’s are assumed to be deterministic in the
usual regression setting), then

E
[
β̂N

∣
∣
∣y1, . . . , yn;β = β̂n

]
= β̂n. (4)

Here E[g(ycom)|yobs;β] denotes the expectation of g(ycom), a function of the complete data, ycom = {y1, . . . , yN},
with respect to the conditional distribution p(ycom|yobs; β), where yobs = {y1, . . . , yn} represents the observed
data. (For simplicity, we suppress the dependence of this conditional distribution on the nuisance parameter σ2,
which is irrelevant for computing the conditional expectation of β̂N .) That is, the best estimator β̂n is the one
that is “self-consistent” in the sense that given β = β̂n, the projection of β̂N will be exactly the same as β̂n, i.e.,
no more improvement is possible.

And the fact that the least-squares estimator (2) satisfies the self-consistency equation (4) itself is a con-
sequence of a more general result on the self-consistency of parametric maximal likelihood estimators (MLE),
stated in Section 2.4 below.

2.2 A General Definition Under L2 Norm

Consider a more general regression setting, where the noisy observations, yi’s, are linked to the signal f (a
regression function) via

yi = f(xi) + ei, i = 1, 2, ... (5)

where xi’s are the design points (e.g., location of a pixel) and ei’s are the error terms. Note that here we do
not need to assume that the errors are signal independent nor that they are uncorrelated with each other, and
nor that they are homogenous. The self-consistency framework is applicable in general, since it relies on the
complete-data method to handle all these complications.

Now suppose we have a method for estimating/reconstructing the signal f when the data are complete/regular;
e.g., in a wavelet setting with xi = i/N and N = 2k, where k is some positive integer. Denote this estimator
by f̂com. But our observations are incomplete or irregularly spaced, that is, yobs = {yi; i = 1, . . . , n} is a subset
of the (possibly imaginary) ideal ycom = {yi; i = 1, . . . , N}, where N ≥ n. Similarly to (4), the self-consistent

Proc. of SPIE Vol. 6701  670124-3



estimator f̂obs, our estimate of f given yobs, is defined to be the solution of the following fixed-point equation
(note we always condition on xi’s):

E
[
f̂com(·)∣∣yobs; f = f̂obs

]
= f̂obs(·). (6)

Note that the conditional expectation E with respect to p(ycom|yobs, f) is the projection operator under the
mean integrated squared loss:

||f̂com − f || =
{

E

[∫

x

(f̂com(x) − f(x))2dx

]}1/2

≡
{∫

ycom

∫

x

(f̂com(x) − f(x))2p(ycom|f)dx dycom

}1/2

, (7)

where p(ycom|f) is the density function of the complete data under our model specification. This is because
E

[
f̂com(·)∣∣yobs, ; f

]
is the projection of f̂com onto a subspace in L2, denoted by Gf = {gobs,f (·)}, which consists

of all L2 integrable functions that only depend on yobs and the given f . That is, the projection is a g ∈ Gf that
minimizes the conditional norm:

{∫

ycom

∫

x

(f̂com(x) − g(x))2p(ycom|yobs; f)dx dycom

}1/2

. (8)

The importance of recognizing this projection property is two-fold. First, it provides a geometric insight on
why self-consistency is a good principle. It essentially provides the best solution to the “chicken or egg” problem:
if we knew the signal f , then the best prediction for the unobserved f̂com is its projection onto the observed
data space under p(ycom|yobs; f). On the other hand, if we knew this projection, then of course it is our best
estimate for f given the method for f̂com and our observed data. But which one comes first? Chicken or egg?
The answer is that they come at the same time, in the sense that we can “try and err” until the two are the
same. That is, the projection is the same as our estimate based on the observed data, exactly as Mr. Littlestat
did with his 13 data points. In this sense, the self-consistency principle is simply a mathematical formulation of
the common-sense “trial-and-error” approach.

Second, the recognition of the projection property immediately allows us to generalize beyond the L2 norm.
For example, it is not uncommon to consider the L1 norm or the L0 norm in wavelet settings or other sparse
representation settings. The self-consistency fixed-point equation will then change accordingly, because the
projection is the (conditional) median under L1, and is the (conditional) mode under L0, in contrast to the
(conditional) mean under L2. That is, we will replace the conditional expectation operator on the left hand
side of (6) by the conditional median operator and conditional mode operator, respectively for L1 and L0. The
corresponding theoretical investigation of the resulting solution is a bit more involved because the general Lp

space and its projection operator is not as easy to handle as when p = 2. But conceptually there is no difficulty
in using any norm – as long as the corresponding projection under p(ycom|yobs; f) can be calculated.

2.3 An Optimality Result Under L2

Let M(f ; ycom) = E
[
f̂com(·)∣∣yobs, f

]
be the projection of f̂com under the L2 norm as defined in (7), and let

M(f̂) ≡ M(f = f̂ ,yobs) be the corresponding induced mapping from Fobs ={all L2-integrable estimators of f
based on yobs} into itself. Then we have the following result.

Theorem 2.1. Suppose the mapping M satisfies the following contraction mapping property:

||M(f̂1) − M(f̂2)|| ≤ δ||f̂1 − f̂2||, for some constant δ ∈ (0, 1). (9)

Then

(I) There exists a unique (with respect to the L2 norm) solution to ||M(f̂obs) − f̂obs|| = 0; and
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(II) The error norm of the solution f̂obs must satisfy

||f̂obs − f || ≤ ||f̂com − f ||
1 − δ

. (10)

The proof of this theorem is quite simple. Result (I) is a direct consequence of the well-known contraction
mapping theorem,17 since Fobs is a complete metric space. Result (II) is easily established by noting that

||f̂obs − f || ≤ ||M(f̂obs) − M(f)|| + ||M(f) − f ||, (11)

and that ||M(f̂obs) − M(f)|| ≤ δ||f̂obs − f || because of (9) and ||M(f) − f || ≤ ||f̂com − f || because M(f) is an
orthogonal projection of f̂com under L2.

The simplicity and elegance of the proof of this theorem is an indication of the generality of the self-
consistency approach. Clearly the result is not restricted to wavelet regression or any particular way of esti-
mating/constrcuting f̂com. However, for wavelet hard or soft thresholding, it can be shown that, asymptotically,
δ =

√
1 − n

N , when the observed n data points are a random sample of the N (imaginary) complete data points.
This makes intuitive sense, because r = 1 − n

N is the missing percentage; the larger r is, the larger the error
||f̂obs − f || should be. The significance of (10) is that it ensures that the self-consistent estimator keeps the
same rate of convergence as its parental complete-data estimator f̂com. That is, if ||f̂com − f || = O(N−α), then
||f̂obs − f || = O(n−α), as long as r is bounded away from one (i.e., 100% missing) as N grows. In this sense,
the self-consistent approach is an optimal approach for dealing with missing data, because it maintains the same
rate of convergence as the parental complete-data estimator.

2.4 Connection with Maximum Likelihood Estimation
The optimality of the self-consistent estimator perhaps can be best seen in parametric cases, because it can
be shown that under mild regularity conditions, parametric maximum likelihood estimators (MLE) must be
self-consistent, at least asymptotically. The linear regression example in Section 2.1 has already hinted at this
possibility, as there, the least-squares estimator for the regression coefficient, which is the MLE under homogenous
normal error, is exactly self-consistent.

To see this more generally, suppose our complete set ycom is of size N , and let �(θ|ycom) be the complete-
data log-likelihood function with parameter θ, and S(θ|ycom) = �′(θ|ycom) and I(θ) = E[−�′′(θ|ycom)|θ] be the
corresponding score function and (expected) Fisher information. For simplicity of illustration, here we assume θ
is a scalar quantity, but the results below extend straightforwardly to multivariate θ. Denoting the complete-data
MLE by θ̂com, then under standard regularity conditions, S(θ̂com|ycom) = 0. Expanding this identity around
S(θ|ycom) yields the standard Taylor expansion or asymptotic representation18 of θ̂com,

θ̂com − θ =
S(θ|ycom)

I(θ)
+ RN , (12)

where RN is a remainder term typically of order op(N−1/2), a notation that means that
√

NRN converges
to zero, in probability, as N → ∞. Taking the conditional expectation of both sides of (12) with respect to
p(ycom|yobs; θ), we obtain

E[θ̂com|yobs; θ] − θ =
E[S(θ|ycom)|yobs; θ]

I(θ)
+ R̃n, (13)

where R̃n = E[RN |yobs; θ] is op(n−1/2) (n is the size of yobs) under mild regularity conditions on RN (e.g.,√
NRN converges to zero in Lp for some p > 1). Because of the Fisher’s identity19 (which is the fundamental

identity underlying the EM algorithm4,20)

E[S(θ|ycom)|yobs; θ] = S(θ|yobs), (14)

and since S(θ|yobs) is the observed-data score function, hence S(θ̂obs|yobs) = 0, we see that the observed-data
MLE θ̂obs must satisfy

E[θ̂com|yobs, θ = θ̂obs] = θ̂obs + op(n−1/2). (15)
Consequently, the MLE is self-consistent, asymptotically, to the order of n−1/2. In this sense, the self-consistency
principle is a more basic principle than the maximum likelihood principle for statistical inference.
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3. WAVELET DE-NOISING WITH MISSING AND IRREGULARLY-SPACED DATA

Of course the self-consistency principle will remain largely as a principle only, if the self-consistency equation
is hard to solve in general. Fortunately, this is not the case, although, like the MLE, it is not always easy to
solve. Here we review our recent work on applying this general method to wavelet de-noising with missing and
irregularly-spaced data. Details can be found in the full papers,7,8 including literature review and comparisons
with other methods.

3.1 The MISC Algorithm

Our first algorithm, termed the multiple imputation self-consistent (MISC) algorithm, is a generic Monte Carlo
based method. Because it uses Monte Carlo simulation, it avoids the analytic difficulty of solving the self-
consistency equation (6). Consequently, it is generally applicable; indeed it can be easily modified to handle the
Lp norm for general p. A necessary price one pays for this generality, much like the standard robustness and
efficiency trade-off, is that it can be computationally very intensive, precisely because it relies on Monte Carlo
simulation.

To describe MISC, we need some notation. Let Iobs be the “observed data index set”: i ∈ Iobs if and only
if the ith data point (xi, yi) in (5) is observed. Let ycom = (y1, . . . , yN )T denote the complete responses, and let
ymis = {yi : i �∈ Iobs} and yobs = {yi : i ∈ Iobs}, that is, the missing and observed portions of ycom, respectively.
Let the covariance matrix of y be Cov(y) = Σ, which is not assumed to be diagonal, because we allow the error
terms ei’s to be correlated, as long as Σ can be identified from yobs.

Under this setup, assume that we have chosen a complete-data wavelet de-noising procedure, such as the
SURE method21, we then run the following iterative algorithm to compute the corresponding wavelet estimates
based on the observed data. Let f̂ (0) and Σ̂

(0)
be our initial guesses of the signal f and noise level Σ. Then each

iteration of MISC consists of the following three steps for t = 1, . . .:

Step 1 Multiple Imputation: For m = 1, . . . , M , simulate ymis,m independently from

P (ymis,m

∣
∣yobs; f = f̂ (t−1),Σ = Σ̂

(t−1)
).

Step 2 Wavelet Shrinkage: For m = 1, . . . , M , apply the chosen complete-data wavelet shrinkage procedure to
the completed data ym = {yobs,ymis,m} and obtain f̂m(xi), i = 1, . . . , N .

Step 3 Combining Estimates: Compute the t-th iterative estimate of f as

f̂ (t)(xi) =
1
M

M∑

m=1

f̂m(xi), i = 1, . . . , N. (16)

Also, use the residuals {yi − f̂ (t)(xi) : i ∈ Iobs} to obtain an efficient estimate Σ̂
(t)

, such as the MLE, of
Σ.

Clearly for Step 1, the larger the M is, the better results one would expect, but also the longer the compu-
tational time it would require. Our numerical experience so far suggests that M in the vicinity of 100 will often
produce acceptable results, as long as the amount of missing data — or more precisely, the fraction of missing
information20— is not too large. An approximate analysis shows that the number of iterations is roughly linear
in [− log(r)]−1, where r is the missing percentage. Hence the computational load for MISC is roughly determined
by −M [log(r)]−1, which goes to infinity as M or r becomes large.
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3.2 A More Refined Algorithm

Although it is essentially impossible to avoid the potentially intensive computation if we insist on a single generic
algorithm, such as MISC, to deal with all situations, it is entirely within our reach to design much more efficient
algorithms if we restrict ourselves to specific classes of applications. One such class of algorithms was developed
in our recent work,7,8 by using a simple yet effective approximation in the case of either hard or soft thresholding.
This class of algorithms was developed based on the observation that if we pretend that the noise variance Σ
is known and diagonal, then we can obtain, under the normality assumption, a closed-form expression for the
conditional expectation on the left-hand side of (6), thereby avoiding the need for multiple imputation (a.k.a.,
Monte Carlo simulation) in Step 1 of MISC.

To see this more clearly, consider a case with hard-thresholding at a fixed cut-off value c. We will use
single-indexing wl instead of the usual double-indexing wjk notation to denote a wavelet coefficient. Because the
complete-data wavelet estimator under the hard-thresholding is of the form

f̂com =
∑

l

1{|wl|≥c}wlψl(t), (17)

where {wl; l = 1, . . .} are complete-data empirical wavelet coefficients and {ψl(t); l = 1, . . . , } are a wavelet basis
from a chosen mother wavelet (e.g., Dauvechies V 22), calculating the conditional expectation needed by the
left-hand side of (6) at the t-th iteration amounts to calculating all

w̃
(t)
l ≡ E

[
1{|wl|≥c}wl

∣
∣
∣yobs; f = f̂ (t−1)

]
, for l = 1, . . . (18)

The real complication in computing (18) is that the thresholding value c is typically in the form c = σ̂h(N),
where σ̂ is an estimated standard error of wl and h(N) is a known function of the sample size, depending on
the choice of the thresholding method; for example, universal thresholding uses h(N) =

√
2 log N ,23 and a later

improvement suggests h(N) =
√

2 log N − log(1 + 256 log N).24 However, if we can ignore the uncertainty in
σ̂, which often is not a terrible assumption in the signal processing content (or putting it differently, one often
has much more serious problems to worry about than the uncertainty in σ̂), then the calculation of (18) can be
done analytically under the assumption that the error terms in (5) are independent normal variables (i.e., white
noise).

Using this approximation, we7,8 obtained the following very effective algorithm, in terms of both statistical
efficiency (e.g., reducing errors in de-noising estimation) and computational efficiency (e.g., all steps are carried
out without any costly Monte Carlo simulation). This algorithm was labelled as “REF” (for “refined”) because
it is a refinement of an earlier crude approximation.7,8

Specifically, the “REF” algorithm has the following five steps at each iteration:

Step 1 For each i such that i �∈ Iobs, impute the corresponding missing yi by y
(t)
i = f̂ (t−1)(xi), which creates a

completed-data set: y
(t)
com = {yi : i ∈ Iobs} ∪ {y(t)

i : i �∈ Iobs}.

Step 2 Apply a Discrete Wavelet Transform (DWT) to y
(t)
com to obtain the empirical wavelet coefficients w(t) =

Wy
(t)
com.

Step 3 Obtain a robust estimate σ̃(t) of σ from w(t), for example, the median absolute deviation method.23

Inflate this error estimate to
σ̂(t) =

√
{σ̃(t)}2 + r{σ̂(t−1)}2, (19)

where r = 1 − n
N is the fraction of missing observations.

Step 4 Compute
w̃

(t)
l = α(w(t)

l , r) + β(w(t)
l , r) × w

(t)
l , (20)
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degraded reconstructed

Figure 1. Experimenting on ourselves (Lee “choked” by Meng.) The left image was degraded with patches of missing pixels,
obtained by masking with random clusters from a truncated Gaussian random field. The right image is a reconstruction
by the REF algorithm using separable Daubechies-V wavelets, with primary resolution level 3.

where the α and β functions are given by

α(w, η) =
ησ√
2π

{
e−

1
2 ( c−w

ησ )2

− e−
1
2 ( c+w

ησ )2}
and β(w, η) = 2 − Φ

(
c − w

ησ

)

− Φ
(

c + w

ησ

)

, (21)

with Φ being the CDF function of N (0, 1).

Step 5 Apply the inverse DWT to w̃(t) and obtain the t-th iterative estimate f̂
(t)

= W T w̃(t).

Note that the inflation formula given in (19) is important, because it (approximately) corrects for the under-
estimation of the variance due to regression imputation. As emphasized in Section 1, without such a correction,
because it puts all the missing data exactly on the regression line, the regression imputation method employed
by Step 1 will lead to underestimation of σ2, which in turn will lead to poorer quality of signal reconstruction.7,8

We also remark that Step 4 can be easily modified to handle soft thresholding: 1(|wl|≥c)sign(wl){|wl| − c}.
We can do this by adding a simple term to w̃

(t)
l of (20), now relabelled as w̃

(t)
l,hard. That is, we replace (20) with

w̃
(t)
l,soft = w̃

(t)
l,hard + c

{

Φ

(
c − w

(t)
l

rσ

)

− Φ

(
c + w

(t)
l

rσ

)}

. (22)

3.3 The Sky is Unlimited ...

To conclude this presentation, I want to emphasize that applications of self-consistent methods are unlimited.
Even just for wavelet de-noising problems, the algorithms discussed above are by no means limited to one
dimensional signal. It can easily be adapted to handle two dimensional data, especially when using separable
wavelets. And, although the REF algorithm was derived under the assumption that the observed data are a
random sample of the complete data, we can nevertheless apply it even when this assumption fails. As an
illustration, Figure 1 shows a degraded picture by clustered missing pixel values, and its reconstruction via a
2-D version of our REF algorithm. Although the reconstructed photo still makes my white shirt too colorful,
the great smiles — after seeing how well our algorithms worked — are much less distracted from the viewer by
the black patches.
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