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ABSTRACT 

We present an overview of a method using Independent Component Analysis (ICA) and 3D Integral Imaging (II) 
technique to recognize 3D objects at different orientations. This method has been successfully applied to the recognition 
and classification of 3D scenes. 
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1. INTRODUCTION 
Three-dimensional (3D) object recognition1-4 provides improved performance compared to the 2D algorithms. In this 
paper, we present an overview of 3D object recognition method by applying the ICA to the integral images.5 
 
The integral imaging (II) is a 3D imaging technique which is especially easy to implement since it works naturally with 
incoherent light. In this technique, the 3D information is acquired by taking a photo of the scene through a microlens 
array (MLA)6-9. This procedure provides an integral image of the 3D object, i. e., a set of elemental images storing 
different perspectives of the 3D scene. The ICA was first proposed in the early 1990s10-13, and it has been applied 
whenever it is mandatory to determine the signals that compound an observable magnitude with no a priori knowledge 
of the sources. This technique has been extensively used in the field of digital image processing14-18. In this keynote 
paper, we present an overview of 3D object recognition using integral imaging and ICA pre-processing of data.  In our 
scheme, Principle Component Analysis is applied as a preprocessing method to reduce the number of dimensions of the 
problem. Then, a kurtosis maximization-based ICA algorithm is applied5. 

This paper is organized as follows. First, in Section 2, we introduce the description of both the integral imaging and the 
algorithm for the recognition of 3D scenes from the integral images. Next, Section 3 aims at the experimental results to 
demonstrate the performance of the proposed method. Finally we conclude in Section 4. 

 

2. APPLICATION OF THE FAST ICA TO THE INTEGRAL IMAGING 
As stated in the introduction, we use II to record the 3D information of the scenes. The procedure to capture an integral 
image is depicted in Fig. 1. Actually, the experimental implementation of the integral imaging is more elaborated, given 
that it evolves the use of telecentric-relay systems for a correct recording of the integral image with a digital camera. 
However, for the purposes of the current paper it is not necessary to specify the details about this procedure19. Note that, 
in our case, the object is put on a turnable stage to permit the acquisition of 3D information in a wider range of angles. 

The elemental images are processed to perform the recognition. Fig. 2 shows the classification system using PCA-ICA. 
The acquired elemental sets are randomly permutated and used partially for training, the rest of them are used for testing. 
Column data vectors are made from elemental images for processing facility. Eigenvectors are calculated based on 
covariance decomposition using the training set. As a result, m eigenvectors with highest eigenvalues are chosen as PCA 
transform to project the data vectors to a lower dimension domain which keeps the most variance. Projected training 
vectors are used as inputs to ICA training algorithm. This preprocessing using PCA significantly reduces the number of 
dimensions of the data; and it also reduces the amount of time needed to train the ICA transform20.  
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Fig. 1. Experimental optical set up for 3D integral imaging; P is the lens pitch.  

 

 
Fig. 2. Diagram of 3D integral imaging system for object recognition using ICA algorithm. 

 

To understand how ICA algorithm works, let us define a data vector, x: x=[x1,x2…xn]T, and a vector of d statistically 
independent components, s: s=[s1,s2…sd]T, where d≤n. The ICA states that any data vector x can be synthesized by 
linearly combining the independent components13, i. e., 

 Asx = , (1) 

where A denotes the so-called mixing matrix.  

To calculate un-mixing matrix WICA=A-1, we choose a kurtosis-maximization based ICA algorithm. Kurtosis of a variable 
y is defined as: 

 { } { }( )224 3)( yEyEykurt −=  (2) 

In this equation, E denotes the expectation operator. As a consequence, the kurtosis of a Gaussian random variable is 
zero while it is non-zero for non-gaussian random variables. The data is first processed to obtain a whitened data vector, 
z13 

 xUDz T2/1−= , (3) 
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where D=diag(d1…dn) is the diagonal matrix of the eigenvalues of the covariance matrix E(xxT) and U=(u1…un) is the 
eigenvector matrix. 

Let w be a row in the transform matrix WICA, the fast-fixed point algorithm uses the kurtosis to find the direction of w so 
that y=wTz is maximally non-gaussian, or correspondingly kurt(wTz) is maximal in an iterative approach13, being 

 ( ){ } ,33 wzwzEw T −←  (4) 

the scheme for each iteration. Note that y becomes one independent component when the algorithm converges. We 
repeat the algorithm to attain different independent components and the ICA transform WICA. 

The projection of a vector x in ICA domain is achieved using the estimated transform acquired in the training process, 
WICA. Note that x is a projected vector in PCA domain. 

 xWx ICAICA = . (5) 

Finally, the classification decision is based on the cosine c of the angle between the testing projected vectors and the 
training projected vector. High values of cosine mean high similarity. The class label of the testing projected vector is 
decided to be that of the training projected vector with which the cosine value is minimal: 

 
trainICAtestICA

trainICAtestICA

xx

xx
c =  (6) 

where xICAtest, xICAtrain are the representations of a testing and a training vector in ICA domain. Similarity is obtained with 
maximal cosine value. The class is determined as the class in which a training projected vector has the maximal cosine 
with the test projected vector. 

3. EXPERIMENTAL SETUP AND RESULTS 
We have performed some experiments to demonstrate the performance of our method. In the first one, we try to 
distinguish between 6 different objects; each object is a toy car approximately 25 mm × 25 mm × 45 mm in size (see Fig. 
3(a)). Each car is rotated in order to capture the integral images at every 3o from -18º to +18º using a squared-grid micro-
lens array of 3 mm focal length and 1 mm pitch. The car is located approximately 100 mm away from the micro-lens 
array.  

   

Fig. 3. (a) A sample car object used in our experiments (b) Cropped sets of 6x5 integral images of one of the cars used in the 
experiments. Each elemental image is composed of 73 x 73 pixels. 

A set of 6 × 5 elemental images is selected from each integral image (see Fig. 3(b)). We randomly choose ten out of 
thirty elemental images for training purposes, then use the rest of them are used for testing our procedure. The size of 
each elemental image is 73×73 pixels. Each elemental image is converted to a 5329×1 sized column vector to facilitate 
the processing. There are 780 vectors for training purposes and 1560 test vectors since there are 6 toy cars rotated at 13 
angles. 100 attributes which retain the most variance are selected using PCA and used for ICA algorithm. Several basis 
images in the columns of matrix A are shown in Fig. 4. 
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Fig. 4. First 20 basis images in columns of matrix A (or row of matrix W) 

Figure 5 illustrates the classification rate for each class. We can observe that samples from class 2 are perfectly 
classified, whereas samples from classes 4 and 6 have lower correct rates of approximately 97%. The average rate for all 
classes is 98.4%. Figure 6 shows that samples from class 6 are most mis-classified at the angle of -180, samples from 
class 4 are most mis-classified at the angles between -150 and -130. 
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Fig. 5. Correct classification rate for toy car object classes from 1 to 6. 
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Fig. 6. Correct classification rate for toy car object classes from 1 to 6. The car orientation angles vary from -180 to 180. 

The training sample size plays an important role in getting the high correct classification rate (See Fig.7). We get a very 
high correct rate of 97% using a training data set of 10 randomly selected elemental images which are corresponding to 
780 training vectors. Using 20 out of 30 elemental images which are corresponding to 1560 training vectors provides 
perfect classification result. The performance is lower when smaller sample sizes are used. 

 

 

Fig. 7. Correct classification rate for different toy car object classes. Sample sizes of 234, 390, 780, 1560, corresponding to 
3, 5, 10, 20 elemental images from each integral image, are used for training, respectively. 

 

As a second experiment, we demonstrate that it is possible to distinguish between two car objects partially occluded by 
tree leaves (the corresponding elemental images are shown in Fig. 8). A higher level of occlusion is applied to the green 
car. Fig. 9 illustrates the correct classification result. We noted that using just 20 out of 30 elemental images provides 
almost perfect classification results. The correct classification rate still retains high for classes 4 and 6 if the training 
sample size for each integral image reduces to 5 or 10. 
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Fig. 8. Two integral images of occluded car object for toy car class 4 and toy car class 6, where the class #6 object car is 
heavily occluded. 
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Fig. 9. Correct classification rate of classifying occluded car objects. Sample sizes of 234, 390, 780, 1560, corresponding to 
3, 5, 10, 20 elemental images from each integral image, are used for training, respectively. 

4. CONCLUSIONS AND REMARKS 
We have presented an overview of a 3D object recognition method which combines integral imaging and kurtosis 
maximization-based ICA. The 3D information of a set of different objects has been captured at different angles by means 
of the integral imaging technique. We have demonstrated that it is possible to use the elemental images for training and 
testing the recognition system. In addition, the speed of the ICA algorithm has been improved thanks to the application 
of PCA to the original data prior to the ICA. The performance of our approach has been evaluated for different classes, 
angles and training sample sizes. Finally, some experiments with partially occluded objects have been carried out. Our 
results demonstrate that the system works fine with both non-occluded and occluded objects. 
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