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ABSTRACT.  Clinical examination crucially relies on the ability to quickly examine large tissue areas and rapidly 
zoom in to regions of interest. Skin lesions often show irregularity in color and appearance in general, especially when 
they start to progress towards malignancy. Large field of view (FOV) and automatic translation of the imaging area are 
critical in the assessment of the entire lesion. Imaging of limited FOVs of the lesion can easily result in false negative 
diagnosis. We present a multiphoton microscope based on two-photon excited fluorescence and second-harmonic 
generation that images FOVs of about 0.8 mm2 (without stitching adjacent FOVs) at speeds of 10 frames/second (800 x 
800 pixels) with lateral and axial resolutions of 0.5 µm and 2.5 µm, respectively. The main novelty of this instrument is 
the design of the scan head, which includes a fast galvanometric scanner, relay optics, a beam expander and a high NA 
objective lens. We optimized the system based on the Olympus 25x, 1.05NA water immersion lens, that features a long 
working distance of 1 mm. Proper tailoring of the beam expander, which consists of the scan and tube lens elements, 
enables scaling of the FOV. The design criteria include a flat wavefront of the beam, minimum field curvature, and 
suppressed spherical aberrations. All aberrations in focus are below the Marechal criterion of 0.07λ rms for diffraction-
limited performance. We demonstrate the practical utility of this microscope by ex-vivo imaging of wide FOVs in 
normal human skin. 

 
1.  INTRODUCTION 
 

In vivo multiphoton microscopy (MPM) is emerging as an important research and clinical tool for label-free 
imaging in human skin. The clinical applications of in vivo label-free MPM span from skin cancer detection and 
diagnosis [1-4], to characterizing and understanding keratinocyte metabolism [5], skin aging [6, 7], pigment biology [8-
10], and cosmetic treatments [11-13]. MPM is based on laser-scanning microscopy, a technique that utilizes a focused 
laser beam that is raster-scanned across the sample to create high-resolution images. A 3D-view of the skin can be 
reconstructed by scanning at multiple depths. Importantly, high-resolution imaging is combined with a label-free contrast 
mechanism. MPM contrast in skin is derived from second harmonic generation (SHG) of collagen and two-photon 
excited fluorescence (TPEF) of tissue components such as the co-factors NADH and FAD+, elastin, keratin, and 
melanin. 

Clinical examination crucially relies on the ability to quickly examine large tissue areas and rapidly zoom in to 
regions of interest. Skin lesions often show irregularity in color and appearance, especially when they start to progress 
towards malignancy. Imaging of large field of views (FOVs) and automatic translation of the imaging area are critical in 
the assessment of the entire lesion to avoid false negative diagnosis. Commercial clinical microscopes based on MPM 
and reflectance confocal microscopy (RCM) have implemented automatic translation of the imaging area [2, 14]. 
However, the initial FOV is limited to less than 0.5x0.5 mm2 and thus, assessing large areas of tens of mm2 at different 
depths may be time consuming and not feasible for clinical use. In an ideal system large FOV and automatic translation 
of the imaging area would be complemented by fast image acquisition and high detection sensitivity in order for such a 
system to be of practical utility and efficient use for fast full assessment of skin lesions.  

Advances in the development of NLOM-based microscopes that can image large FOVs have been recently 
made by several research groups [15, 16]. Tsai et al. reported on developing an NLOM-based system that can image up 
to 80 mm2 at a maximum speed of 5mm/ms by trading-off lateral resolution (between 1.2 μm and 2 μm across the entire 
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FOV) [16]. This microscope was applied for imaging resting-state vasomotion across both hemispheres of a murine brain 
through a transcranial window and histological slides without the need to stich adjacent imaging areas. Negrean and 
Mansvelder presented an in-depth optimization study of scan and tube lens designs for minimizing optical aberrations 
associated with large angle scanning [17]. Both aforementioned studies used conventional galvanometer scanning. 
Higher scan speeds provided by resonant scanner as the fast axis and conventional galvanometer as the slow axis have 
been previously implemented in MPM-based systems for several applications [18-21], including skin imaging [19, 21].  

In this work, we demonstrate that MPM skin imaging can be performed rapidly on large areas without 
compromising resolution. The MPM-based imaging system we developed features rapid acquisition capability of large 
FOV of 800x800 μm2, with sub-micron spatial resolution. Ex vivo images of normal human skin were acquired to assess 
the performance of the system. 

 
2. BASIC DESCRIPTION OF THE MICROSCOPE AND MAIN DESIGN CONSIDERATIONS 
 
 The MPM system includes a fast galvanometric scanner, relay optics, a beam expander and a high NA objective 
lens. The selection of the objective determines the main optical design considerations of the microscope. We have 
chosen to optimize the system based on the 25x, 1.05 NA water immersion lens from Olympus (XLPL25XWMP), one of 
the premier tissue imaging objectives that features a long working distance of 2 mm. This objective has a focal distance 
of 9.6 mm (assuming a tube lens focal length of 180 mm used by Olympus) and an entrance pupil diameter of 
approximately 15 mm. We describe below in detail the main components of the system. 
 
2.1 Implementation of fast imaging acquisition 
 
 Our design is based on a resonant scanner (Cambridge Technology), which operates at 4 kHz and supports a 
frame rate of 10 frames/s for an image of 800 x 800 pixels. Once relevant areas have been identified, it is possible to take 
high-density pixel maps of 1600 x 1600 pixels at a rate of 0.2 seconds per frame. However, high signal-to-noise ratio 
(SNR) images require averaging of several frames. We found that averaging 4 frames is sufficient for the fast scanning 
mode, which we use for fast visualization of features in the sample, while average of 8 frames is necessary for the slow 
scanning mode, employed for recording high SNR images. Therefore, the fast scanning mode used has a rate of 0.4 
seconds per frame (average of 4 frames of 800x800 pixels), while the slow scanning mode has a rate of 1.6 seconds per 
frame (average of 8 frames of 1600x1600 pixels). 

Along with the fast mechanical scanner, high-speed acquisition electronics is needed to capture the data. We use 
a high speed 4 channel 14-bit analog-to-digital (A/D) converter to process the data. The A/D card features a sampling 
rate of 120 MS/s and a 1GS memory, more than sufficient to acquire imaging data at 10 frames/s. The card is controlled 
through a C++ based software and a GUI for the final user-friendly version of scanning software (Intelligent Imaging 
Innovations, Denver, CO). 

The useful aperture for the resonant scanner is 12 mm x 9.25 mm, while for the right hand Y mirror is 10 mm. 
 
 
2.2 Implementation of a wide field of view (FOV) 
 
2.2.1 Optical design considerations 
 
 In a laser-scanning microscope, the FOV is determined by the objective focal length (fobj) and the scanning 
angle at the back aperture of the objective (Φ): 
 
     FOV=2 x fobj x tan Φ,    (1) 
 
where Φ is measured from the optical axis and thus, it is half of the full scanning angle. Large FOV is achieved for long 
objective focal lengths and large scanning angles. Both of these parameters result in limited spatial resolution, as long 
focal lengths correspond to low magnification and low NA objectives, while large scanning angles lead to optical 
aberrations such as coma and astigmatism. Once the focal length is determined based on the selection of the objective, 
the FOV is limited by the scanning angle. The scanning angle of the mirrors depends on the magnification of the system. 
Low magnification is required to minimize the scanning angle and optical aberrations such as coma and astigmatism. 
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compared to the images acquired with a commercial microscope using the same objective and 40x improvement in 
acquisition speed when compared to the available clinical MPM microscopes scanning the same FOV. Although fast 
scanning or wide field of view microscopes have been developed before [16, 18-21], none of these systems was 
optimized for nonlinear optical microscopy in the clinic. Our design is tailored specifically to maximize FOV, image 
speed and signal collection from key molecular components in skin tissue. The technical advancements described in 
this manuscript, if implemented, can significantly enhance the practical use of the nonlinear optical 
microscopy in clinical settings.  
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