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ABSTRACT 

Early neurovascular coupling (NVC) changes in Alzheimer’s disease can potentially provide imaging biomarkers to 
assist with diagnosis and treatment.  Previous efforts to quantify NVC with intrinsic signal imaging have required 
assumptions of baseline optical pathlength to calculate changes in oxy- and deoxy-hemoglobin concentrations 
during evoked stimuli.  In this work, we present an economical spatial frequency domain imaging (SFDI) platform 
utilizing a commercially available LED projector, camera, and off-the-shelf optical components suitable for imaging 
dynamic optical properties.   The fast acquisition platform described in this work is validated on silicone phantoms 
and demonstrated in neuroimaging of a mouse model.   
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INTRODUCTION 

Alzheimer’s disease (AD) is a neurodegenerative disease affecting 35 million people worldwide. [1].  There is 
significant interest in developing in vivo imaging methods for AD to enhance our understanding of the disease and 
to help facilitate earlier intervention [2, 3].  Most AD cases (60-90%) are associated with ischemic vascular disease, 
and 90% of AD patients exhibit cerebral amyloid angiopathy (CAA), a vascular disease caused by amyloid 
deposition in the vessels[1].  A physiological consequence of CAA, reduced vascular reactivity, has been shown in 
Alzheimer’s using transcranial doppler [4-6], fMRI [7, 8], PET [9], and SPECT [10] techniques.  Neurovascular 
coupling (NVC), the localized vasodilation that occurs from a specific metabolic demand, is also reduced in AD 
with visual [11] and verbal fluency[12] challenges.  Therefore, development of imaging biomarkers sensitive to 
these potentially early physiological changes is of great interest. 

Rodent models of AD are useful for studying the time course of pathology.  In the triple transgenic (3xTg-AD) 
mouse model of AD, we have shown significant baseline absorption and scattering contrast in the near-infrared 
wavelengths (650-970nm) as well as magnitude differences in brain oxygenation to an inhaled-hyperoxia challenge 
in severely pathological mice compared to controls [13].  Others have also seen neurovascular decoupling in a CAA 
mouse model with laser speckle imaging [14].  NVC has largely been studied in rats with intrinsic signal imaging, 
which relies on the modified Beer-Lambert law (Eq. 1) to fit oxy- and deoxy-hemoglobin concentration changes 
from reflectance changes at two or more wavelengths of light. 

       Δ A(λ) = ∑ (E(λ) * Δ c*D(λ) )                        (Eq. 1) 

Where Δ A(λ) is the wavelength-dependent log of the normalized change in reflectance,  E(λ) is the wavelength-
dependent extinction coefficient of chromophore c, and D(λ) is the path length traveled which depends on 
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absorption and scattering coefficients of the tissue.  These absorption and scattering coefficients are usually assumed 
a priori, but doing so when comparing AD to control mice with differing baseline optical properties can lead to 
calculation errors. 

Spatial frequency domain imaging (SFDI) is a reflectance based imaging technique that can avoid assumptions 
regarding intrinsic signal detection by resolving absorption and scattering coefficients in tissue on a pixel-by-pixel 
basis.  SFDI works by structuring light into sinusoidal patterns and projecting them onto the tissue surface [15].  The 
tissue acts a spatial filter and blurs the structured patterns.  By projecting patterns of differing spatial frequencies, 
the Modulation Transfer Function (MTF) of the tissue can be found which uniquely determines a pair of optical 
absorption and scattering coefficients. Spectroscopic measurements made at wavelengths ranging from 650 to 
970nm are used to determine intrinsic concentrations of oxy- and deoxy-hemoglobin, water, and lipid [16, 17].  
Spatial resolution is dependent on the field-of-view and number of pixels in the CCD camera, while temporal 
resolution for acquiring a series of spectroscopic maps can vary from seconds to minutes depending on the 
wavelength selection strategy [18].  In this paper, an SFDI system is described that is optimized for quantitatively 
detecting the fast and small intrinsic signals we expect to observe during an evoked stimulus test of NVC. 

METHODS 

Instrumentation: We modified an LED microprojector (M2, AAXA Technologies) to project a field-of-view of 
17x22mm by removing the lens array and replacing the tube lens with a 100mm collimating and 400mm focusing 
lens (Thorlabs).  In this work the blue LED was disconnected, while leaving the green and red LEDs centered at 
525nm and 623nm, respectively (Fig. 1).  We measured the liquid crystal on silicone (LCoS) chip in the Aaxa 
refresh rate at 350Hz and sequential display of a single color frame in the pattern RGBGR, essentially giving a total 
refresh rate of 70Hz, or about 14.286ms/frame.  Thus we used multiples of 14.286ms as the exposure time to get 
consistent light levels.  The gray scale of the projector was also non-linear and had to be determined empirically by 
averaging the camera response to calibration projections (Fig. 1).  From the calibration, we are able to project 
corrected sinusoidal patterns onto the sample and, as seen in Figure 2, the reflected image is separated spectrally 
with a dichroic (Omega) and further bandpass-filtered (FB530-10, FL632.8-10, Thorlabs) before hitting two 12-bit 
CCD cameras (Flea2G, Pointgrey).  Images from the two cameras were coregistered by using a fiduciary marker on 
a phantom[19] (Fig. 2).  Linear polarizers (47315, Edmund Optics) were also put before each camera to reduce 
specular reflection from the sample.  The projector and cameras were connected to a PC and controlled by custom 
Labview software (National Instruments).   

  

Figure 1: (Left) Block diagram of AAXA M2 microprojector modifications. (Right) Gamma functions for green and red 
channels of AAXA M2 microprojector. 

Phantom experiments: Optical properties of a silicone phantom were calculated using a rapid lookup-table 
approach described in [16].  We derived reflectance at two frequencies by projecting three sinusoid patterns 120 
degrees out of phase sequentially.  The remitted reflectance was captured by the two cameras and saved for further 
processing offline (Eq. 2, 3).  Camera dark images were also acquired to subtract for proper reflectance calibration.  
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Figure 3: (Left) Phantom optical properties were acquired and were within 10% of true values. (Right) Baseline optical 
properties from a mouse brain in vivo. Average and standard deviation of µa and µs’ in the whole cortex at 530nm were 0.421 ± 
0.080mm^-1 and 1.52 ± 0.38mm^-1, respectively, and µa and µs’ at 633nm were 0.082 ± 0.027mm^-1 and 1.03 ± 0.21mm^-1, 
respectively.  A two-wavelength fit for total hemoglobin values gave an average and standard deviation value of 46.9 ± 8.9µM in 
the one-month old control mouse cortex.  

 

Figure 4: (Left) Normalized average AC reflectance and (Right) normalized average DC reflectance over 30 seconds showing 
under 0.1% drift when averaged over 60 trials. 
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Figure 5: (Left) Normalized average scattering coefficient and (Right) normalized average absorption coefficient over 30 
seconds showing under 0.2% drift when averaged over 60 trials. 

 

CONCLUSIONS 

It is difficult to study AD as it is currently a diagnosis of exclusion that requires cognitive impairment and a certain 
level of amyloid-beta plaques, typically found during autopsy.  Therefore, in vivo imaging biomarkers that can 
probe the anatomical and physiological changes in early AD would be invaluable to the diagnosis and treatment of 
AD.  Neurovascular uncoupling may be an early pathological marker of AD, but current intrinsic imaging studies in 
rodent models lack an imaging method capable of accounting for baseline optical property differences.  This fast 
SFDI platform is optimized for quantitatively detecting small changes in scattering and absorption that are necessary 
for measuring the vascular response during evoked stimuli. These measurements may lead to earlier sequencing of 
the uncoupling process in an AD mouse model and suggest a novel early biomarker for testing in humans with 
analogous transcranial NIRS techniques. 
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