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Abstract. The choice of the regularization parameter has a profound
effect on the solution of ill-posed inverse problems such as optical
topography. We review 11 different methods for selecting the
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Introduction
.1 Image Reconstruction and Regularization

ptical topography uses diffuse reflectance measurements on
he surface of an object to derive its internal optical
roperties.1,2 It can be used to measure functional brain activ-
ty, because the optical properties depend on the concentration
f oxyhemoglobin and deoxyhemoglobin. The first optical to-
ography images, such as those obtained using the Hitachi
TG-100 system,3 were obtained by interpolating the mea-
urements into the image space. However, it is becoming in-
reasingly common for optical topography images to be re-
onstructed by solving the inverse problem. Boas et al.4,5 has
hown that this provides improved spatial resolution and
uantitative accuracy compared to interpolation. However, the
nverse problem is ill-posed, which means that there is not a
ingle, well-behaved solution. In order to obtain a meaningful

ddress all correspondence to Teresa Correia, Department of Medical Physics
nd Bioengineering, University College London, Malet Place Engineering,
uilding-Gower Street-London, London WC1E 6BT United Kingdom; Tel:
04420767902641; Fax: 0044-20-7679-0255.
ournal of Biomedical Optics 034044-
solution, the problem must be regularized, for example, using
Tikhonov regularization.

Tikhonov regularization requires a regularization param-
eter, here called �. This is most often determined heuristically,
by subjectively selecting a value of � that appears by eye to
give the “best” image. A number of more objective methods
have been proposed for selecting � in optical topography and
other inverse problems. In this paper, we review 11 methods
that have been proposed for selecting � and apply them to the
optical topography inverse problem. We concentrate on func-
tional imaging of brain activity, where the measured changes
are typically small and measurements are available before and
after a small change in the optical properties. Under these
conditions, the nonlinear image reconstruction problem can be
linearized using the Rytov approximation. However, the prob-
lem remains highly ill-posed and underdetermined.

The above methods were initially applied to a deblurring
problem, which is an ill-posed problem for which the solution

1083-3668/2009/14�3�/034044/11/$25.00 © 2009 SPIE
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s known. Thereafter, the same methods were applied to ex-
erimental optical topography data.

.2 Regularization of Inverse Problems

eblurring and image reconstruction are both discrete ill-
osed inverse problems of the form Ax=b, where b is the
ata vector �length m�, x is the vector of unknown parameters
length n� and A is a matrix of size m�n. For the deblurring
roblem, b is the blurred image, x is the original image, and A
epresents the blurring matrix. For the optical topography
roblem, A is the sensitivity matrix, which maps the changes
n the measured data b to the changes in the optical properties
.

The least-squares solution x̂ is simply minx�Ax−b�2, but
his is highly affected by noise and must therefore be regular-
zed. A common method, and the one we choose to use here,
s the zero-order Tikhonov regularization6–8

x� = arg minx��Ax − b�2
2 + �2�x�2

2� ,

=�ATA + �2I�−1ATb , �1�

here �Ax−b�2 is a measure of the difference between the
easured data b and the data that would be obtained if the

olution image was used to simulate data. It is sometimes
alled the least-squares error or the residual norm. We choose
o call it the data norm. The norm �x�2

2 is a measure of the
oise in the image and is sometimes called the regularized
orm or solution norm. Here it is called the image norm.

If � is increased, then the contribution of the image norm
o the solution is increased and the solution becomes less
ensitive to perturbations in the data. A smaller � emphasises
he contribution from the data norm, effectively assuming that
he quality of the data is good; thus, the solution is allowed to
onform more closely to the measured data. In the case of
ikhonov regularization, � governs the level of smoothness
nforced in the image.

A third norm, the predictive norm, is given by �Ax�

Axexact�2
2, where xexact is the exact solution. It requires

nowledge of the exact solution, which in most real cases is
nknown, or knowledge of the noise statistics.9

We briefly mention the singular value decomposition
SVD�, a method for reducing a matrix into constituent parts,
hich also provides a way of analyzing the ill-posedness of a
roblem.8,10 The SVD of matrix A=USVT=�i=1

n ui�ivi
T, where

and V are square, orthonormal matrices and S is a m�n
iagonal �though nonsquare� matrix. The components of S, �i,
re known as the singular values and are arranged in order of
ecreasing magnitude. The problem can be regularized either
y setting all �i��=0, or by weighting them, for example,
y a factor f i=�i

2 / ��i
2+�2� which is equivalent to Tikhonov

egularization.
The rate at which �i decreases is an indication of the ill-

osedness of the problem. One measure of this is given by the
iscrete Picard condition �DPC�.11

DEFINITION 1.1. The data vector b satisfies the discrete
icard condition if the data space coefficients �ui

Tb� on aver-
ge decay to zero faster than the singular values � .
i

ournal of Biomedical Optics 034044-
If the DPC is violated for a given problem, then one should
question the validity of the solution. In ill-posed problems, we
find that the DPC holds initially and then fails at some point
iDPC, where the data become dominated by errors. If this is the
case, and if the regularization parameter � is accurately se-
lected, then the regularized solution should provide a valid
solution. Examining iDPC provides a method of characterizing
the ill-posedness of the problem.

2 Methods for Selecting Regularization
Parameter

2.1 Criteria
We are seeking a method for selecting the regularization pa-
rameter for optical topography. We begin by reviewing a num-
ber of methods that have been proposed in the literature, but
reject some immediately because they are not suitable for op-
tical topography. Our criteria are as follows:

1. The method should not require any subjective input
from the user.

2. The method should only require knowledge that is
available during clinical optical topography. For example, it
should not require knowledge of the size of the feature being
examined.

3. The method should not assume particular features in the
image. For example, it should not assume there is a single,
spatially isolated change.

2.2 Heuristic Method
The most straightforward—and most widely used—method
for selecting � is to examine solutions for a range of � heu-
ristically by eye and to select the one that results in the most
acceptable reconstruction. This method is subjective and
nonrepeatable.12 A common variant is to take � as being equal
to the noise present in the data.13 We retain this method in our
analysis as a measure against which to compare other, more
objective methods.

2.3 Methods that Optimize Data and Image

2.3.1 L-curve
The L-curve is probably the most commonly employed objec-
tive method for finding the regularization parameter when
solving ill-posed problems.8,14–16 It is a log-log plot, for dif-
ferent �, of the image norm against the data norm. We take
the value of �, which corresponds to the point of maximum
curvature on the graph, which is normally the point on the
graph that is nearest to the origin and so mutually minimizes
both the image norm and the data norm.

2.3.2 Fixed noise figure �NF�

The noise figure �NF� is the ratio of the signal-to-noise ratio
in the measurements to the signal-to-noise ratio in the
image.12,17,18 The regularization parameter is found by plot-
ting NF as a function of �, and we select the NF whose �
returns the most acceptable solution. This method replaces the
selection of a regularization parameter as in the heuristic
method by the selection of a fixed NF value. The ratio of the
signal-to-noise ratios is more constant across different experi-
mental setups than the heuristic method �i.e., when a fixed NF
value is used the regularization parameter can be different for
May/June 2009 � Vol. 14�3�2
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he different image reconstructions. However, we require a
ully objective measure and therefore exclude this method
rom further analysis.

.4 Methods that Optimize the Data

.4.1 Generalized cross-validation �GCV�

CV is based on the principle that, if a data point is omitted,
hen we should be able to estimate the missing data value
rom the regularized solution obtained from this reduced data
et.19,20 We minimize �GCV� ���= �Ax�−b�2

2 / �trace�I
AA�

†�	2, where A�
† is the Tikhonov regularized pseudoin-

erse of A. The numerator is the data norm, and the denomi-
ator is inversely related to the number of singular values
sed in the regularized solution. Minimizing this then favors
ow data norms while penalizing solutions that require many
ingular values. GCV therefore finds the � that provides a
olution that can fit the data using the smallest possible num-
er of parameters, thereby minimizing the contribution from
mall singular values.

.4.2 Unbiased predictive risk estimator �UPRE�

he UPRE method seeks to minimize the predictive risk.9 The
ata noise is assumed to be random white noise of known
ariance. The accuracy of the method therefore depends on
he accuracy of the estimate of noise. Furthermore, because
he UPRE is an unbiased estimator, its expected value is the
ame as the expected value of the predictive risk, but it does
ot necessarily change with � in the same way as the predic-
ive risk. We cannot therefore guarantee that the solution error
s small.

.4.3 Discrepancy principle �DP�

his method selects the � for which the data norm is equal to
he data variance.9 Like the UPRE, it depends on our knowl-
dge of the noise statistics: if the data variance is unknown
nd must be estimated, the method may not necessarily return
he optimal regularization parameter. If we do have knowl-
dge of the data variance, then we may see improved perfor-
ance as this additional information is used.

Fig. 1 Original test image.
ournal of Biomedical Optics 034044-
2.4.4 Normalized cumulative periodogram �NCP�

This method favors the regularization parameter for which the
residual vector resembles white noise.21 It is derived from the
periodogram, which is the power spectrum of the residual and
is obtained by taking the squares of the absolute values of the
discrete Fourier transform for half the residual vector length.
The NCP is the cumulative periodogram normalized by the
sum of its elements. If the residuals are pure white noise, then
the NCP is a straight line; hence, the selected regularization
parameter is the one that minimizes the distance of the NCP to
a straight line.21

2.5 Methods that Optimize the Image

2.5.1 F-slope
The f-slope is a plot of the image norm against ln�1 /��.22 We
select the � at the flattest part of the curve, which corresponds
to the smallest difference between adjacent solution norms.
This method only analyses the image norm and not the data
norm.

2.5.2 Quasi-optimality criterion �QOC�

The regularization parameter is found by minimizing Q�

= ��2�dx� /d��2�	�2.8,23 In an iterative method, this minimizes
the difference between the current and previous solutions. In a
noniterative approach, QOC minimizes the update to the ini-
tial guess.

2.5.3 Full width half maximum �FWHM�

The FWHM of the region of contrast is calculated for differ-
ent regularization parameters.24 This method is only appli-
cable to images that contain a single isolated region, and thus,
we reject it. Adler and Guardo17 proposed an alternative
method of defining FWHM known as the blur radius as a
method to select �. This method has the same disadvantages
as FWHM; thus, we reject it also.

2.5.4 Contrast-to-noise ratio �CNR�

The CNR is plotted as a function of the regularization param-
eter, where contrast is the ratio of the peak value of the image,

Fig. 2 Blurred image with 5% added Gaussian noise.
May/June 2009 � Vol. 14�3�3
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fter background subtraction, to the background value, and
oise is the image norm.24 We seek the regularization param-
ter that maximizes CNR.

Regińska25 has shown that the minimum of �����
�x�2 · �Ax�−b�2

�, where ��0, is similar to the point that
inimizes the L-curve. We propose a modification to the
NR method where, rather than maximizing CNR, we maxi-
ize CNR. ��

−1, which simultaneously optimizes both the
mage norm and the data norm.

Problem 1: Deblurring
.1 Method

eblurring is an example of an ill-posed inverse problem. The
unction blur from the Matlab package “Regularization
ools”26 was used to generate the matrix A, the original image
�Fig. 1�, with dimensions 50�50 pixels, and the corre-

ponding blurred image b to which we added different levels
f Gaussian noise, from 5 to 40% and for 500 noise realisa-
ions each �Fig. 2�. The smoothing matrix A is chosen to have
roperties that make it computationally efficient to handle: it
s the Kronecker product of a Toeplitz matrix T with itself:
=T � T. The Toeplitz matrix contains in its diagonal ele-
ents of a Gaussian point-spread function with variance �2,
hich models the blurring effect, and is a banded matrix, with
and l that defines the number of diagonals, from the main
iagonal, which are stored in the matrix T.9,27 For this test, we
ave set �=3 and band=5.

One convenient property of matrix A is that its SVD de-
ends only on the SVD of the initial Toeplitz matrices. There-
ore, if the SVD of T is T=UbSbVb

T, the regularized solution x̂
s given by

ig. 3 Discrete Picard condition for the deblurring problem, where
he vertical dashed line marks the beginning of �Ui

Tb���i and the
orizontal line represents the noise level. DPC is satisfied for iDPC
695.
ournal of Biomedical Optics 034044-
x̂ = Vb

St�Ub
TbUb�

St
2 + �2 Vb

T, �2�

where St=diag�Sb�diag�Sb
T�.

The discrete Picard condition is examined in Fig. 3. The
value of i at which �i begins to decay more slowly than �Ui

Tb�
is shown by the vertical line. This point is emphasized by
examining �Ui

Tb� /�i whose gradient turns positive at the same
point. This shows that the DPC is satisfied for iDPC�695. For
higher values of i, the DPC is no longer satisfied and �Ui

Tb�
reaches the noise level. Because the DPC is at least partially
satisfied, it means that we can expect to find a solution that
approximately recovers the real solution.

The original image is known; thus, we can find the regu-
larized solution x� that is closest to the real solution xexact.
This allows us to define the optimal regularization parameter
�opt to be the one that minimizes the relative error

Fig. 4 Relative error for the regularised solution for a single realization
of 5% noise. The �opt value is marked by the cross.

Fig. 5 Reconstructed image with � =0.038.
opt

May/June 2009 � Vol. 14�3�4
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	 =
�x� − xexact�2

�xexact�2
. �3�

Figure 4 shows a plot of 	 against �, for one realization of
% Gaussian noise. The minimum occurs for �opt=0.038.
he corresponding deblurred and denoised image for �opt is
hown in Fig. 5.

.2 Results
he mean optimal regularization parameters, and correspond-

ng standard deviations, for the ten selection methods tested
re shown for different noise levels in Table 1. The corre-
ponding errors calculated from Eq. �3� using the mean values
n Table 1 are shown in Table 2 and in Fig. 6. The regulariza-

Table 1 Regularization parameters � obtained u
with different noise levels.

Method 5% 10%

Optimal 0.039±2.6% 0.066±3

Heuristic 0.050±60.0% 0.125±6

L-curve 0.030±2.7% 0.065±1

GCV 0.030±4.0% 0.047±5

UPRE 0.030±3.3% 0.048±4

DP 0.054±3.2% 0.087±3

NCP 0.056±6.4% 0.088±7

f-slope 0.070±1.7% 0.089±1

QOC 0.121±1.5% 0.142±1

CNR 0.014±35.0% 0.018±5

CNR·�−1 0.022±3.6% 0.049±4

Method 25% 30%

Optimal 0.131±4.5% 0.148±4

Heuristic 0.190±57.9% 0.300±6

L-curve 0.128±1.5% 0.145±1

GCV 0.081±6.1% 0.090±5

UPRE 0.083±5.1% 0.092±4

DP 0.151±3.2% 0.167±3

NCP 0.152±9.1% 0.168±9

f-slope 0.127±1.8% 0.138±1

QOC 0.189±1.7% 0.202±1

CNR 0.039±55.4% 0.044±5

CNR·�−1 0.129±9.7% 0.154±2
ournal of Biomedical Optics 034044-
tion parameter was chosen from a set of 1000 logarithmically
spaced points between 10−4 and 10−0.3.

3.3 Discussion

3.3.1 Heuristic method

It was not easy to identify a single � with the heuristic
method, and we instead selected a range of � that provide
acceptable results. In every case, the range included �opt. The
corresponding ranges of errors are quoted in Table 2. Note
that for better comparison with the other methods, we chose
to display its central value and error, where the latter gives the
range limits. The range of � included �opt; however, the regu-
larization parameter errors are consistently higher than for

e selection methods for the deblurring problem

15% 20%

0.090±4.0% 0.111±4.2%

0.130±53.8% 0.190±57.9%

0.090±1.6% 0.110±1.5%

0.060±5.6% 0.071±5.8%

0.062±4.4% 0.073±4.8%

0.113±3.3% 0.133±3.1%

0.113±8.5% 0.134±8.7%

0.104±1.8% 0.116±1.7%

0.160±1.8% 0.176±1.7%

0.025±60.0% 0.033±61.8%

0.077±13.2% 0.105±11.3%

35% 40%

0.164±4.3% 0.178±4.0%

0.300±66.7% 0.350±71.4%

0.159±1.5% 0.172±1.3%

0.099±5.8% 0.108±5.0%

0.101±4.9% 0.109±5.0%

0.181±3.2% 0.195±3.1%

0.183±9.3% 0.195±9.7%

0.147±1.8% 0.155±1.7%

0.213±1.6% 0.223±1.7%

0.049±53.4% 0.051±56.4%

0.183±2.8% 0.190±2.8%
sing th

.3%

0.0%

.7%

.1%

.4%

.2%

.6%

.7%

.7%

7.2%

.5%

.2%

6.7%

.5%

.7%

.8%
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ost of the other methods, illustrating the irreproducibility of
he heuristic method.

.3.2 L-curve
he L-curve �plotted Fig. 7 for a 5% noise realization� did
enerally exhibit a single, easily identifiable point of maxi-
um curvature. The predicted � agree closely with �opt.
Hanke28 showed that the L-curve method fails to find � for

ery ill-posed solutions. When the singular values decay very
apidly to zero, �opt may occur before the data norm starts
ncreasing, because a large number of singular values have to
e included before the data norm increases significantly.
ogel29 has shown another nonconvergence of �, which oc-
urs when the regularized solution fails to converge to the true
olution as the dimensions of the problem tend toward infin-
ty. We do not see evidence of either of these two concerns.

Table 2 Relative error for the deblurring proble

Method 5% 10%

Optimal 0.387±1.0% 0.432

Heuristic 0.393±0.8% 0.457

L-curve 0.395±1.5% 0.432

GCV 0.395±1.5% 0.433

UPRE 0.395±1.5% 0.432

DP 0.400±0.8% 0.438

NCP 0.400±0.8% 0.439

f-slope 0.414±0.5% 0.439

QOC 0.451±0.2% 0.463

CNR 0.578±2.8% 0.853

CNR·�−1 0.403±1.5% 0.456

Method 25% 30%

Optimal 0.479±1.0% 0.488

Heuristic 0.489±0.6% 0.525

L-curve 0.479±1.0% 0.488

GCV 0.513±1.9% 0.526

UPRE 0.510±2.0% 0.520

DP 0.481±0.8% 0.489

NCP 0.481±0.8% 0.490

f-slope 0.480±1.3% 0.488

QOC 0.489±0.6% 0.495

CNR 0.895±2.6% 0.903

CNR·�−1 0.481±0.8% 0.489
ournal of Biomedical Optics 034044-
For the deblurring problem, an image reconstructed with 5%
noise was slightly undersmoothed, with a visible noise com-
ponent. However, all the results were acceptable, as confirmed
by the small relative errors �Table 2� and by the small regu-
larization parameter error �Table 1�. The latter reflects the
small sensitivity of this method to perturbations of similar
nature in the data.

3.3.3 GCV
The minimum value for this function was easily identifiable,
although it was located on a relatively flat region of the curve.
The selected � was similar to �opt at low noise levels but was
rather low at higher noise levels.

The GCV method has been shown to perform well in dif-
ferent situations. However, it can sometimes be difficult to
locate its minimum as the function may be flat near � or

different noise levels.

15% 20%

0.454±1.1% 0.468±1.1%

0.463±0.7% 0.485±0.6%

0.454±1.1% 0.468±1.1%

0.477±1.7% 0.499±1.8%

0.473±1.7% 0.496±1.8%

0.458±0.9% 0.471±0.9%

0.456±1.1% 0.471±0.9%

0.456±0.9% 0.469±1.1%

0.473±0.5% 0.482±0.6%

0.878±2.4% 0.884±2.4%

0.457±0.9% 0.472±0.9%

35% 40%

0.495±1.2% 0.502±1.0%

0.525±0.6% 0.544±0.6%

0.495±1.2% 0.502±1.2%

0.534±1.2% 0.541±1.9%

0.528±1.9% 0.541±1.9%

0.496±1.0% 0.503±1.0%

0.496±1.0% 0.503±1.0%

0.497±1.2% 0.504±1.2%

0.501±0.8% 0.506±1.0%

0.935±2.7% 0.987±2.5%

0.498±1.0% 0.502±1.0%
m with

±1.2%

±0.5%

±1.2%

±1.2%

±1.2%

±0.9%

±0.7%

±0.9%

±0.4%

±2.3%

±1.1%

±1.0%

±0.6%

±1.0%

±1.6%

±1.7%

±0.8%

±0.8%

±1.2%

±0.8%

±2.6%

±0.8%
opt
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isplay multiple minima.30 Hansen and O’Leary15 presented
n example where GCV failed to find � due to the flatness of
he curve. However, we were able to locate a single minimum
or all our test cases from 5 to 40% noise.

.3.4 UPRE
he UPRE function did exhibit an easily identified minimum.
owever, to calculate UPRE it is necessary to find the SVD of

he blur matrix, which, although it was a reasonable calcula-
ion in this case due to the carefully chosen blurring matrix, in
eneral, could be prohibitively computationally intensive. The
erformance of UPRE appears to be similar to that of GCV,
ith good estimates of � at low noise levels but an underes-

imated � at higher noise levels. Vogel9 used a two-
imensional deblurring problem with added white noise to
ompare these two methods, and found that the UPRE and
CV methods were similar.

.3.5 DP
his method appeared to overestimate values of �, confirming

he results of Thompson et al.31 and Hansen.8

.3.6 NCP
his method and the DP have similar performances, as ex-
ected, because they both select the regularization parameter
uch that the data norm is equal to the noise variance. How-
ver, this method seems to be more sensitive to the different
oise realizations, in particular for noise levels above 25%.
ansen et al.21 found that the NCP gives better results than

he GCV method, which is confirmed here at higher noise
evels.

.3.7 f-Slope
he f-slope curve clearly shows a flat part, which is less sen-
itive to perturbations. This method appears to overestimate �
t low noise levels but selects � close to �opt at higher noise
evels.
ournal of Biomedical Optics 034044-
It has been claimed22 that the f-slope method can perform
better than the L-curve method, particularly when little regu-
larization is needed. However, this work mainly looked at
much smaller � than in our deblurring problem �as low as
10−15� and it is unclear how the results translate to our more
ill-posed problem. Using f-slope, we were able to reconstruct
an image that is close to the true image when the noise in the
data is equal to or higher than 15% but for smaller noise
levels, it tended to overregularize the solution.

3.3.8 QOC
The regularization parameter � selected by this method was
invariably higher than �opt. However, the performance of
QOC appeared to improve at higher noise levels.

Hansen8 compared the L-curve, the GCV, and the QOC
methods by applying them to six test problems with different
data perturbations but with the same noise level. He found
that the QOC method generally oversmooths and that there
may be a problem with local minima. We saw the same over-
smoothing effect but did not observe local minima.

3.3.9 CNR
There was a single clear global maximum. However, for all
noise levels, this method found ���opt, and generated much
greater relative errors than for any of the other methods, and
the errors associated with � are as large as those correspond-
ing to the heuristic method.

3.3.10 CNR·�−1

The addition of the � parameter led to � which were closer to
�opt than for CNR alone. The method still tended to underes-
timate � for low noise levels, but for higher noise levels, the
selection of � was good. Note that the regularization param-
eter uncertainty is particularly large for noise in the data be-
tween 15 and 25%.

Fig. 7 L-curve for deblurring with 5% noise.
May/June 2009 � Vol. 14�3�7
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Problem 2: Optical Topography
.1 Method
ata were obtained with the University College of London

UCL� optical topography system with light sources at
70 nm32using a test object consisting of absorbing targets
ithin a tank filled with a solution with tissue-equivalent op-

ical properties �the absorption coefficient 
a was 0.01 mm−1

nd the reduced scattering coefficient 
s� was 1 mm−1�. A
ylindrical absorbing target �radius 5 mm and height 10 mm�
as made with the same 
s� as the solution but with twice the
ackground absorption �
a=0.02 mm−1�.

The optical topography array consisted of eight sources
nd eight detectors from which 64 measurements were
ade.33 The array was placed on one of the walls of the tank,
hich is made of epoxy resin with the same optical properties

s the solution, and is 2 mm thick. The target was positioned
n the center of the array, which should provide higher sensi-
ivity and resolution, and at a depth of 10 mm. Data were
ollected for 20 s and averaged to reduce the noise, and a
aseline measurement was acquired with no target present.

The software package TOAST �temporal optical absorp-
ion and scattering tomography�, which has been developed
y Prof. S. R. Arridge and Dr. M. Schweiger at the UCL,
odels the propagations of light in highly scattering media

nd was used to generate the sensitivity matrix A. Finally,
mages were reconstructed using a 3D linear model.13

.2 Results
he results for all the methods are summarized in Table 3.
he � values used are the same as before.

.2.1 DPC
igure 8 shows that the DPC was partially satisfied, and thus,
egularization should be able to give a stable solution. The

able 3 Regularization parameters for experimental data using dif-
erent selection methods.

ethod �

euristic �0.004, 0.015�

-curve 0.0066

CV 0.0085

PRE 0.0071

P 0.0061

CP 0.0032

-slope —

OC —

NR 0.0051

NR·�−1 0.0068

�
�
0.0071
ournal of Biomedical Optics 034044-
vertical line represents iDPC, where for i� iDPC the data space
coefficients �ui

Tb� decay faster than the singular values �i, and
for i� iDPC the data space coefficients reach a level deter-
mined by the perturbations in the data; thus the DPC is no
longer satisfied.

4.3 Discussion

4.3.1 Heuristic method
The range of � that generated acceptable images, which were
relatively noise-free, with adequate spatial localization, and
which placed the target in the middle of the image was �
� �0.004,0.015	.

For this phantom study, we know the optical properties and
target position with an accuracy of 5–10%. Figure 9 shows the
absorption coefficient error 	
a, which is the difference be-
tween the maximum 
a, calculated from the reconstructed
images for regularization parameters found with the heuristic
method in steps of 0.001, and the target 
a. We refer to the
point where the error is zero, ��
a

=0.0071, as the optimal
regularization parameter. An image reconstructed using �
=��
a

=0.0071, at 10 mm depth, is shown in Fig. 10. The
target size in the image, measured by the FWHM, is
10�3.5�14�3.5 nm, which is not too different from the
real target dimensions. The target size is approximately con-
stant for the selected range of regularization parameters.

The values of � found by the other selection methods are
compared to ��
a

below. Table 3 shows all � values.

4.3.2 L-curve
The L-curve did not exhibit a pronounced corner, but it was
still possible to calculate the point of maximum curvature.
The failure to find a sharp corner was due to the high ill-
posedness of this problem �as shown by the exponential decay
of singular values in Figure 8�. However, � at the point of
maximum curvature of the L-curve was closer than any of the
other methods to � . The L-curve method has been used

Fig. 8 Discrete Picard condition. There are 64 singular values �i. The
horizontal dashed line represents the noise level, and the vertical line
iDPC
27 for which i� iDPC no longer satisfies the DPC.
�
a
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reviously in optical imaging, for simulated and real data, and
ts results are considered to generate acceptable images.34–36

.3.3 GCV
he value for � found using GCV was the highest of all the
ethods. Hansen16 found that the GCV method fails to com-

ute a useful solution when errors are highly correlated. In the
resence of uncorrelated errors, this method gives a slightly
verregularized �. Our result could be explained by a low
resence of correlated errors.

.3.4 UPRE
PRE found a very shallow minimum at �=��
a

. The noise
ariance was assumed to be the point at which i= iDPC in Fig.
. At this point, ui

Tb reaches the noise floor and no longer
ecreases.

.3.5 DP
he L-curve, GCV, DP, and UPRE methods have previously
een compared for simulated, phantom, and clinical data in
lectrical impedance tomography.37 All the methods were suc-
essful for simulated and clinical data, whereas for data ac-
uired on a test phantom, the DP and UPRE methods failed to
onverge. Overall, the preferred method was the GCV. For
ptical topography data, both DP and UPRE methods con-
erged and the predicted � agreed with the values found heu-
istically.

.3.6 NCP
t is necessary to preprocess data so that all the variables have
ero mean and unit variance. In optical topography, we use
he difference imaging approach, where the baseline is sub-
racted from the data; hence, all the measurements should
ave zero mean, but different variance. Whitening could be
ccomplished by dividing each measurement by the respec-
ive standard deviation. This method returns a very low �,
hich is not included in the values found heuristically. If we

et the Kolmogorov–Smirnoff limits38 to a significance level

ig. 9 Absorption coefficient error for the heuristic method regulariza-
ion parameters. The cross indicates the point where the error is zero.
ournal of Biomedical Optics 034044-
of 5%, which is equivalent to a 95% confidence level, and
choose the largest regularization parameter, then we obtain
�=0.0056, which is a more reasonable result.

4.3.7 f-slope
The solution norm monotonically increased with ln�1 /��;
thus, it was not possible to identify the minimum slope. To
our knowledge the f-slope method has not been tested previ-
ously on real data, only for testing models where it has a good
performance.22 This method failed when applied to our optical
topography problem, probably due to its ill-posedness.

4.3.8 QOC
The QOC monotonically decreased with log��� and failed to
show a reliable minimum, and consequently, this method
failed.

4.3.9 CNR
To calculate the contrast, it is necessary to know 
amax

and

abkg

. 
amax
. The value of 
amax

was taken to be the mean of
the pixel of maximum intensity in the image and its eight
nearest neighbors in the xy plane. The value of 
abkg

was the
average of 24 pixels furthest from the peak in the image. This
method gave the lowest � of all the methods, and artifacts
were present in reconstructed images.

4.3.10 CNR �−1

As before, including � gave a much more realistic estimate
of � than CNR alone, which was very close to ��
a

.
The regularization parameter selection methods were

tested on two further data sets, obtained using the same liquid
phantom, but targets with different absorption coefficient and
the results were consistent with those shown here.

Fig. 10 Reconstructed optical topography image, using ��
a
=0.0071.
May/June 2009 � Vol. 14�3�9
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Conclusion

ptimizing � is critical when reconstructing diffuse optical
mages because it controls the smoothness of the regularized
olution and balances the influence of the noise present in the
mage against its accuracy. We have examined a number of

ethods for selecting �. Diffuse optical imaging is a chal-
enging ill-posed and underdetermined problem, and the cor-
ect target image is unknown, making it difficult to validate
he image quality. We therefore initially tested the methods by
pplying them to a simpler ill-posed problem, the deblurring
roblem, where we can control the amount of blur and noise
pplied to the data and where the exact solution is known �and
o �opt can be found�. We believe that if a method fails to
roduce a good regularized solution for the deblurring prob-
em, we cannot rely on it for optical topography. However, if
good solution is found for the deblurring problem, then that
ethod will not necessarily be reliable for the more demand-

ng optical problem.
In Sec. 2.1, we list three criteria that a selection method

ust meet. On the basis of these criteria, we reject the heu-
istic method, the fixed noise figure method, and methods re-
ated to optimizing the FWHM of the image. All the remain-
ng methods performed acceptably well for the deblurring
roblem. However, the f-slope and QOC failed to converge
or the more demanding optical topography problem.

Of the remaining methods, the L-curve consistently dem-
nstrated the lowest error on the deblurring problem �see
ables 1 and 2�. It is easy to implement and simultaneously
inimizes both the data norm and the image norm. On the

ther hand, the DP and UPRE methods require knowledge of
he noise variance, which may not always be available. How-
ver, the DPC seems to provide a good estimate of the noise
evel in optical topography. The NCP method has the advan-
age of selecting � automatically; hence, it does not directly
equire an estimate of the noise variance. Nevertheless, this
ethod is sensitive to error fluctuations and only gives rea-

onable results for the optical topography problem under cer-
ain assumptions. DP, UPRE, NCP, and GCV only consider
he data norm. The CNR method gave poor results but was

uch more successful when � was minimized simulta-
eously. The use of � in this way, as proposed by Regińska25

nd developed further here, could be applied to other methods
nd may be worth further examination. However, here we
onclude that L-curve is the optimal selection method for op-
ical topography.

Thus far, we have studied ideal or almost ideal cases,
hereas in vivo studies suffer further sources of error. These

nclude motion artifacts, changes in the contact between the
ptodes and the skin, which can result in intensity fluctuations
n the collected data, and detection of light that has not passed
hrough the investigated medium. All these effects produce
orrelated errors, which are not necessarily apparent in the
aw data. The L-curve has been shown to perform well in the
resence of these type of errors.15,16 However, as mentioned
reviously, Hanke28 showed that the L-curve method may fail
o find a good regularization parameter when the solutions are
ery smooth. Under these circumstances, GCV should be in-
estigated as an alternative to L-curve.
ournal of Biomedical Optics 034044-1
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