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Abstract. The production of accurate and independent images of the changes in concentration of oxyhemo-
globin and deoxyhemoglobin by diffuse optical imaging is heavily dependent on which wavelengths of near-infra-
red light are chosen to interrogate the target tissue. Although wavelengths can be selected by theoretical
methods, in practice the accuracy of reconstructed images will be affected by wavelength-specific and
system-specific factors such as laser source power and detector sensitivity. We describe the application of
a data-driven approach to optimum wavelength selection for the second generation of University College
London’s multichannel, time-domain optical tomography system (MONSTIR II). By performing a functional acti-
vation experiment using 12 different wavelengths between 690 and 870 nm, we were able to identify the combi-
nations of 2, 3, and 4 wavelengths which most accurately reproduced the results obtained using all 12
wavelengths via an imaging approach. Our results show that the set of 2, 3, and 4 wavelengths which produce
the most accurate images of functional activation are [770, 810], [770, 790, 850], and [730, 770, 810, 850]
respectively, but also that the system is relatively robust to wavelength selection within certain limits.
Although these results are specific to MONSTIR II, the approach we developed can be applied to other multi-
spectral near-infrared spectroscopy and optical imaging systems. © 2015 Society of Photo-Optical Instrumentation Engineers

(SPIE) [DOI: 10.1117/1.JBO.20.1.016003]
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1 Introduction
Diffuse optical imaging (DOI) techniques, which use two or
more wavelengths of near-infrared light to image changes in
oxyhemoglobin and deoxyhemoglobin concentrations (HbO
and HbR respectively), are continuing to become more techni-
cally advanced, more accurate, and more widely applicable.1–3

Although diffuse optical techniques are successfully being used
to study a variety of clinical conditions in a variety of patients,4–7

their most common and fastest growing application is the study
of functional brain activation.8,9 In this context, functional acti-
vation refers to the local changes in HbO and HbR that occur as
a reaction to the increased metabolic activity of groups of neu-
rons that are responsible for the processing of a given cognitive
task or stimulus. The classical hemodynamic response function
signal consists of a localized increase in HbO and a smaller,
colocated, simultaneous decrease in HbR.10 This behavior is
consistent with the localized vasculature system over-compen-
sating for the increase in neuronal oxygen demand by initiating a
large influx of oxygenated blood.

Near-infrared spectroscopy (NIRS), the forerunner to DOI,
usually employs two wavelengths of light and allows measure-
ments of changes in HbO and HbR in a channel-wise (rather
than imaging) domain. Since the invention of NIRS, there

have been a number of investigations which have aimed to deter-
mine which two wavelengths provide the most accurate mea-
surements of HbO and HbR. These studies have typically
used analytical approaches to minimize the cross talk between
the measurements at each wavelength, to ensure that a change in
concentration of one chromophore does not give rise to an erro-
neous measurement of a change in concentration of the second
chromophore.11–14 These studies broadly concluded that the first
wavelength should be in the range of 650 to 750 nm, whereas
the second should be 820 nm or higher.

Diffuse optical tomography systems can be divided into
three categories based on the data they acquire. Continuous
wave (CW) systems are the most common and least expensive.
They use continuously illuminated sources and provide a
measure of change in intensity for each wavelength and channel.
Frequency domain systems employ intensity-modulated sources,
so that both the change in amplitude and change in phase result-
ing from an alteration in the optical properties of the target can
be recorded. Last, time-domain systems use picosecond laser
pulses and high temporal resolution detectors to measure the
time-of-flight of photons across a region of tissue, allowing a
number of data-types to be calculated including amplitude,
phase, and mean time-of-flight.15

The process of reconstructing images of changes in HbO and
HbR, which is central to DOI, requires a model of the geometric
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and optical properties of the target object. A forward model that
relates changes in optical properties to changes in the measure-
ment space is produced using knowledge of photon transport.16

This model can then be inverted to transform from the measured
data to an image of changes in optical properties. CW systems
are limited by their inability to separate signal changes due to an
alteration of scatter from those due to an alteration of absorp-
tion.17,18 Images of functional changes in HbO and HbR recon-
structed from CW systems will, therefore, be predicated on the
assumption that scatter remains constant. The simplest approach
to reconstruct HbO and HbR images is to produce a forward
model for each wavelength and independently reconstruct images
of the change in absorption coefficient. Two or more of
these images can then be linearly combined using the relevant
specific absorption spectra to produce images of changes in
HbO and HbR.19 This approach, however, includes a number of
sources of error. A more optimal, multispectral approach was
introduced by Corlu et al.20 This approach constructs a multi-
spectral forward model of chromophore concentration and wave-
length-independent scattering properties for multiple wavelengths
and inverts it in a single process. This direct reconstruction means
that the number of unknowns remains constant as the number of
wavelengths increases, thus a greater number of wavelengths will
typically result in a more accurate reconstruction.20

Corlu et al. also introduced an analytical method for optimiz-
ing wavelength selection. This method sought to minimize cross
talk between the optical properties of absorption and scatter,
while maximizing the separation of HbO and HbR. Correia
et al.21 extended this optimization process further. By using a
three-layer slab to simulate the adult head, sensitivity profiles
for a range of wavelengths were computed and the spatial over-
lap of these profiles was introduced as an additional parameter
that should be maximized for optimal wavelength selection.
Using this criterion in addition to those employed by Corlu
et al., Correia et al. reported that the optimum combinations
of 3 and 4 wavelengths were [680� 5; 726� 7; 835� 17] and
½680� 5; 715� 14; 733� 7; 828� 9� nm, respectively.

Although theoretical assessments are extremely valuable, par-
ticularly when used to design new DOI systems, they cannot
account for experimental factors that may affect the efficacy of
certain wavelengths or combinations of wavelengths. Laser source
power, system transmission, and detector efficiency can all be
wavelength dependent. In addition, although the level of absorp-
tion of a given wavelength of light in tissue can be modeled, the
effect on the signal-to-noise ratio (SNR) for real DOI channels is
difficult to simulate. Wavelengths at the lower end of the near-
infrared (NIR) range are more heavily absorbed by human tissues
because of the spectra of hemoglobin and the effect of the pigment
melanin. In practice, this can mean that there is simply not enough
light reaching the detector to provide a meaningful measurement.

With these considerations in mind, we designed an experi-
ment using the second generation of University College
London’s (UCL) time-domain optical tomography system,
MONSTIR II, to allow a data-driven approach to wavelength
selection. This approach can then be directly compared to the
theoretical results of previous studies.

2 Methods

2.1 MONSTIR II and System Application

The second generation of UCL’s multichannel optoelectronic NIR
system for time-resolved image reconstruction (MONSTIR II)

employs a supercontinuum laser source (Fianium Ltd.,
Southampton, United Kingdom) and 32 independent photo-
multiplier tube (PMT) detector channels.22 The laser output,
consisting of ∼4-ps light pulses at 40 MHz, is routed through
an acousto-optic tunable filter and switched into one of 32
source fibers. The end of each source fiber is embedded
coaxially within a 4-mm diameter detector fiber bundle and
coupled to the target object. The remaining end of each detec-
tor bundle is then connected to one of the 32 detector chan-
nels. Variable optical attenuators, located between the detector
bundle and the photocathode of each PMT, allow the intensity
of light incident on each PMT to be optimized for each
source–detector combination.

During an imaging sequence, each source position on the tar-
get object is illuminated in turn, whereas all other channels act as
detector locations. During each illumination, the acousto-optic
tunable filter is switched between four different wavelength set-
tings so that the target object is illuminated at each wavelength for
the same period of time. A full imaging sequence is completed
once all source locations have been illuminated. For each wave-
length and source–detector pair, MONSTIR II produces a tempo-
ral-point spread function (TPSF); a histogram of photon travel
times through the target object. In order to obtain a sufficient
number of samples to build up these histograms, it is necessary
to acquire photons from several million input pulses at each of
the 4 wavelengths, which in practice means illuminating each
source position for several seconds. The MONSTIR II system
is described in greater detail in Cooper et al.22

For this study of adult functional activation, 10 optical fiber
bundles were positioned so as to cover the left motor cortex. The
holes in the head cap into which each connector was fixed were
located around the 10-20 scalp location C3. The layout of
the imaging array is depicted in Fig. 1. Over the course of each
imaging sequence, 2 of the 10 positions were used, in turn, as
source locations. During the illumination of each source loca-
tion, the remaining 9 positions served as detectors. For each
imaging sequence, we acquired data from 18 channels at 4
wavelengths (72 TPSFs). Fiber locations were chosen to provide
a range of source–detector separations from 27.5 to 55 mm. The

Fig. 1 The cortical sensitivity profile for the imaging array over the left
motor cortex, calculated at 770 nm. The black circles correspond to
detector locations and the slightly smaller overlapping magenta
circles correspond to source locations.
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fibers were held in place using custom built plastic connectors
each containing a 5-mm glass prism (Thorlabs, Inc., United
Kingdom), which were coupled to a flexible head cap (EasyCap
GmbH, Germany). These prism connectors were designed to
allow the fiber bundles to lie flat against the surface of the
head while also fitting into the head cap.

2.2 Experimental Design

As MONSTIR II is limited to 4 wavelengths per imaging
sequence, obtaining high quality functional activation data at
a greater number of wavelengths required a careful experimental
design. The functional task we chose to employ was a simple
right-hand finger tapping task that has been used repeatedly
in DOI studies to elicit a functional response.8 Four right-handed
male subjects (median age 35.5 years, range 15 years) partici-
pated in the study. Written informed consent was obtained prior
to the experiment.

In order to balance the duration of the experiment with the
number of wavelengths employed, images were obtained at 12
wavelengths divided into 3 sets of 4: [710, 770, 810, 850],
[690, 750, 790, 830], and [730, 740, 840, 870]. Each of the
two source locations was illuminated for 5 s, with this time
being divided equally between the 4wavelengths in 100-ms inter-
vals. A full imaging sequence at any one of the 3 sets of 4 wave-
lengths took 10 s. The order in which the two source positions
were illuminated was alternated in order to remove any potential
bias. This resulted in six different imaging sequences (3 sets of
wavelengths, 2 illumination orders). For each of the six imaging
sequences, the functional task was repeated five times. During
each repetition, one imaging sequence was performed where
the subject remained at rest. Once this sequence was completed,
an auditory cue was used to instruct the subject to begin the fin-
ger-tapping task. After 4 s of the task, a second imaging sequence
was initiated. Once this sequence was completed another audi-
tory cue instructed the subject to stop tapping. The time between
the end of each finger-tapping task and the beginning of the next
rest sequencewas randomized between 20 and 30 s. The period of
data acquisition, including some additional rest periods when
changing the imaging sequence, lasted ∼45 min. A significant
period of time was required prior to data acquisition to adjust
the head cap and the subject’s hair to ensure good optical contact
between the scalp and each optical fiber.

2.3 Data Preprocessing, Head-Model and Image
Reconstruction

The experiment yielded a total of 2160 TPSFs (5 task repetitions,
2 illumination orders, 18 channels, and 12 wavelengths) per sub-
ject for both active (during finger tapping) and rest (prior to fin-
ger tapping) states. The TPSFs were averaged over the 5 task
repetitions and 2 illumination orders before being background
corrected, resulting in 216 mean TPSFs for both active and
rest states. The raw data from each channel were visually
inspected for unusual features, such as prepeaks (which are typ-
ically caused by light passing from the end of the source fiber to
the detector fiber without travelling through tissue) or abnor-
mally high background noise. Channels displaying such features
were removed from further analysis. To eliminate unacceptably
noisy data, channels which exhibited a standard deviation of the
mean time of flight greater than 15 ps (∼5-mm path deviation)
were removed. Log-amplitude and phase data-types were then
computed from these mean TPSFs using the methods described

by Hebden et al.23 Phase data extracted at 100 MHz was cor-
rected for phase wrapping.

To allow meaningful image reconstruction, we built a 5 layer
adult head model based on the ICBM 2009c nonlinear asymmet-
ric MRI atlas.24 The scalp and skull layers were extracted from
the average T1 MRI images using the methodology proposed by
Perdue et al.25 Combined with the segmentations present in the
ICBM atlas, this yielded a 5-part tissue mask (scalp, skull, cer-
ebrospinal fluid, gray matter, and white matter) with a voxel size
of 1 mm × 1 mm × 1 mm. The Iso2Mesh package26,27 was then
applied to produce a 5 layer tetrahedral volume mesh and a cort-
ical surface mesh from the tissue mask. The resulting adult head
model package, containing the tissue mask, volume, and surface
meshes, is now freely available at Ref. 28.

Values of the absorption coefficient (μa) and reduced scatter-
ing coefficient (μ 0

s) were estimated for each tissue type and at
each of the 12 wavelengths used in this study by taking the avail-
able measurements for each tissue type13,29,30 and performing a
linear fit to these data over the wavelength range 690 to 870 nm.
Although this relationship is clearly not linear, this approach is
likely the best available. The refractive index was taken as 1.4
for all tissues.

Using the tetrahedral head mesh, optical fiber locations and
tissue optical properties, we used the TOAST image recon-
struction package16 to compute a forward model for each of
the 12 wavelengths. This process produced 12 Jacobian matrices
of dimensions 36 × N, where N is the number of mesh nodes
and 36 is the number of channels (18) multiplied by the number
of data-types (amplitude and phase). Each Jacobian matrix maps
a change in absorption coefficient in the mesh space to a change
in amplitude and phase in the measurement space, within the
limits of a linear approximation.

Images of changes in HbO and HbR were calculated using
the multispectral image reconstruction approach.20,21 A multi-
spectral Jacobian was compiled to allow direct reconstruction
of images of concentration change to be performed for m wave-
lengths such that:
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and EHbR
m are the specific absorption coefficients at wavelength
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m for HbO and HbR, respectively, ΔAc
m and ΔPc

m are the
changes in log-amplitude and phase data values between the
active and rest states for channel c and wavelength m, and
ΔCHbO and ΔCHbO are vectors of length N corresponding to
the nodal images of changes in HbO and HbR, respectively.
The absorption coefficient spectra for oxy- and deoxyhemoglo-
bin were those acquired by Matcher et al.31

The multispectral Jacobian was inverted using a standard
pseudoinverse approach with zeroth-order Tikhonov regulariza-
tion. The regularization parameter was chosen by inspection of
the gold standard image for each subject and then fixed for all
reconstructions for that subject. In all cases, the regularization
parameter was of the order of 1% of the maximum singular
value of the multispectral Jacobian.32 The Jacobian and data
for each channel were normalized by the standard deviation
of the amplitude and phase data across all 12 wavelengths.
To improve computational performance, each Jacobian was
mapped from the tetrahedral head mesh to a regular grid of
dimensions 40 × 40 × 40 using TOAST. Reconstructed images
of changes in HbO and HbR were then mapped back to the tetra-
hedral head mesh. To simplify image presentation and to isolate
functionally induced changes, the cortical changes in HbO and
HbR were extracted from the tetrahedral head mesh by assigning
each node in the cortical surface mesh an image value equal to
the mean over a 3-mm spherical kernel in the tetrahedral volume
mesh centered at the location of the surface mesh node. The
resulting images of the cortical changes in HbO and HbR
were then used in the analysis of wavelength selection.

2.4 Wavelength Optimization

Our approach to determine the optimum selection of wave-
lengths was based on the assumption that the case where all
12 wavelengths are used to reconstruct images of the concen-
tration changes of HbO and HbR will produce images that
are, within the limits of our experiment, maximally accurate.
For each subject, “gold standard” images of HbO and HbR
were calculated using all 12 wavelengths. In addition, for
every possible combination of 2, 3, and 4 wavelengths from
the set of 12 (corresponding to 66, 220, and 495 combinations,
respectively) we computed the corresponding cortical HbO and
HbR images.

In order to determine the optimum combinations of wave-
lengths on a group level, average images were calculated.
Prior to calculating average images, it was first necessary to
undertake a process of normalization. Normalizing the subject
images prior to averaging ensured that each subject’s data con-
tributed equally to the analysis, so as not to bias the results in
favor of the subject with the strongest functional response. The
necessity of this process is particularly clear in our data set
because the functional response of subject 1 was greater in mag-
nitude than that of the other subjects. A normalization process is
also necessary because functional activation typically exhibits a
larger increase in HbO than decrease in HbR, therefore, any
efforts to select optimum wavelengths will be biased toward
the wavelengths which are most suitable for HbO image
reconstruction at the expense of the accuracy of the HbR
image. To account for these effects, all HbO and HbR combi-
nation images produced for each subject were divided by the
maximum absolute value of that subject’s gold standard HbO
and HbR images, respectively. We refer to these images as “rel-
ative” in comparison to the normalized gold standard images.
The relative HbO and HbR images were averaged across all

possible combinations, yielding group average cortical HbO
and HbR images for the 12 wavelength gold standard, 66 com-
binations of 2 wavelengths, 220 combinations of 3 wavelengths,
and 495 combinations of 4 wavelengths.

We then calculated the mean-squared error (MSE) between
the group average HbO images for every combination of 2, 3,
and 4 wavelengths and the group average gold standard HbO
image. Similarly, we calculated the MSE between the group
average HbR images for every combination of 2, 3, and 4 wave-
lengths and the group average gold standard HbR image. In
addition, we also calculated the MSE between the group average
HbO and HbR images in combination, (i.e., a concatenated
matrix [HbO, HbR]; the total error across both image types
when equally weighted, henceforth referred to as HbAll) and
the group average gold standard equivalent. All possible com-
binations of wavelengths could then be ranked in order of the
MSE they give rise to, which allowed the combinations that pro-
duce images most similar to the gold standard images to be
identified.

To improve the sensitivity of the MSE measurement, values
were only calculated for cortical nodes to which the imaging
array was sensitive: i.e., nodes where the sum over rows of
the average Jacobian for all 12 wavelengths exceeded 0.1%
of the maximum. The cortical sensitivity distribution for the
mid-wavelength 770 nm (i.e., the sum over rows of jJ770j),
with optode locations superimposed, is shown in Fig. 1.

3 Results
Preprocessing resulted in the removal of 4 channels from subject
1, 4 channels from subject 2, 3 channels from subject 3, and 2
channels from subject 4. As a result, we retained ∼80% to 90%
of the data across all subjects for further processing.

Figure 2 shows the mean percentage change in intensity
between the active and rest states as a function of wavelength
for a representative subject. The normalized 12 wavelength gold
standard image for each subject and the group average images
are shown in Fig. 3. As expected from a functional response,
each subject shows a localized increase in HbO (with an average

Fig. 2 Average change in intensity between active and rest states for
16 channels at all 12 wavelengths. Two of the 18 channels were
removed due to experimental confounds in this subject.
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peak of 1.6 μM) and a smaller, colocalized decrease in HbR
(average peak of −0.44 μM) occurring over the left motor
strip in response to the right-handed motor task.

Figure 4 depicts the group average gold standard 12 wave-
length images for HbO and HbR in the top row, and in the pro-
ceeding rows shows the 4, 3, and 2 wavelength relative group
average images for both HbO and HbR, where the wavelength
combination used to reconstruct the images was determined by
which HbAll matrix exhibited the lowest MSE in relation to the
group average gold standard HbAll matrix. Using this criteria,
the best combinations of 4, 3, and 2 wavelengths were [730,
770, 810, 850], [770, 790, 850], and [770, 810] nm, respectively.
These best-case images show remarkable consistency with
the 12 wavelength images, particularly for HbO. Figure 5 fol-
lows a similar format to represent the opposite extreme, depict-
ing the group average gold standard 12 wavelength images for
HbO and HbR in the top row, and subsequently the 4, 3, and 2
wavelength group average HbO and HbR images where the
wavelength combination used to reconstruct the images was
determined by which HbAll matrix exhibited the highest
MSE in relation to the group average gold standard HbAll
matrix. The worst 4, 3, and 2 wavelength combinations were
[830, 840, 850, 870], [840, 850, 870], and [840, 870] nm,
respectively.

Fig. 5 The worst reconstructed relative images of group average
changes in cortical concentrations of HbO and HbR. Results are
shown for the HbO and HbR images of the gold standard 12 wave-
length case, and for the combinations of 2, 3, and 4 wavelength rel-
ative images which yielded the worst HbAll results (i.e., highest MSE)
relative to the gold standard. The associated HbAll MSE values (a.u.)
are also presented.

Fig. 3 Normalized, gold standard (i.e., 12 wavelength) reconstructed
images of changes in cortical concentrations of HbO andHbR for each
individual subject during the right-handed finger-tapping task. Each of
the 10 images are normalized to their maximum absolute value. The
actual peak HbO and HbR concentration changes for each subject are
as follows: subject 1:HbO ¼ 3.5 μM,HbR ¼ −1.1 μM; subject 2:HbO¼
0.88μM, HbR¼−0.40 μM; subject 3: HbO¼1.3 μM, HbR¼−0.51 μM;
subject 4: HbO ¼ 2.42 μM, HbR ¼ −0.47 μM; average: HbO ¼
1.63 μM, HbR ¼ −0.44 μM.

Fig. 4 The best reconstructed relative images of group average
changes in cortical concentrations of HbO and HbR. Results are
shown for the HbO and HbR images of the gold standard 12 wave-
length case, and for the combinations of 2, 3, and 4 wavelength
relative images which yielded the best HbAll results [i.e., lowest
mean squared error (MSE)] relative to the gold standard. The asso-
ciated HbAll MSE values (a.u.) are also presented.
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Figure 6 depicts the 10 combinations of 2 wavelengths which
yielded the lowest MSE and the 10 combinations that yielded
the highest MSE between the relative group average HbAll
matrices and the group average gold standard HbAll matrix.
The MSE values associated with each combination are shown
in the lower panel. Figures 7 and 8 show the same arrangement
of best and worst combinations for the HbAll matrices with their
associated error values, but for 3 and 4 wavelengths, respec-
tively. Figure 9 shows the best 10 and worst 10 combinations
of 4 wavelengths along with their associated MSE values for
the HbO images, whereas Fig. 10 shows the same arrangement
for the 4 wavelength HbR images.

4 Discussion
Our results exhibit a number of features which are expected,
given knowledge of the specific absorption spectra of HbO
and HbR. This is particularly clear from Figs. 9 and 10,
which show the combinations of 4 wavelengths which produce
the best and worst relative HbO and HbR images, respectively.
The best combinations for creating HbO images consistently
include at least 2 wavelengths above the isosbestic point, and

the majority of the best combinations for creating HbR images
include at least 2 or 3 wavelengths below the isosbestic point.
The majority of the best combinations for the 2, 3, and 4 wave-
length matrices of HbAll all contain 770 nm, implying this
wavelength’s position in the specific absorption spectra works
well for resolving changes in both chromophores. In general,
for reconstructing accurate images of both HbO and HbR, a dis-
persed selection of wavelengths across the NIR range, both
above and below the isosbestic point, is essential.

The worst 4 wavelength combinations for HbO and HbR also
agree well with theory. The worst combinations for the HbO
images are all below 770 nm, where the specific absorption
coefficient for oxyhemoglobin is lower than that of deoxyhemo-
globin. Similarly, the worst combinations for HbR images all
contain wavelengths equal to or above 790 nm, the part of
the NIR spectrum where the specific absorption coefficient of
deoxygenated hemoglobin is lower than that of oxygenated
hemoglobin. Figure 5 demonstrates that the worst HbR images
represent cross talk, i.e., they mimic the HbO response. In com-
parison, the worst HbO images, though weaker in strength than
the gold standard image, still maintain the same general shape

Fig. 6 The 10 best and 10 worst combinations of 2 wavelengths, ordered by HbAll MSE are shown in (a),
whereas the associated MSE values are shown in (b).
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and a positive value. This observation is almost certainly
because the increase in HbO concentration during a functional
response is significantly larger than the associated decrease in
HbR concentration.

For those building optical imaging systems or choosing
between wavelengths for their imaging studies, the results of
the HbAll MSE comparison are the most relevant as they dictate
which wavelengths should be selected in order to achieve an
equal balance between the accuracy of HbO and HbR images.
Of the best 10 combinations of 4 wavelengths for HbAll, 9 have
2 wavelengths below and 2 wavelengths above the isosbestic
point, which appears to provide a balance between the accuracy
of HbO and HbR images. This result is clearly theoretically sup-
ported by the shape of the specific absorption spectra for the two
chromophores.

Our normalization procedure removes the scaling bias that
would favor the HbO images over HbR images in the selection
of wavelengths, but does not affect the SNRs of the HbO or HbR
signals. Consequentially, the HbAll results tend to be dominated
by the component with the higher error (i.e., the most noise or
lower SNR), which in this instance is the HbR image. For exam-
ple, the worst HbR combination images have a much higher

MSE than the worst HbO combination images (0.26 versus
0.052 a.u. respectively for the 4 wavelength images), and the
HbAll MSE values are in between the two (0.13 a.u. for the
worst 4 wavelength image). These results indicate that when
selecting wavelengths with the intention of reconstructing both
HbO and HbR images, one should choose wavelengths that
favor HbR. In practice, this compromise is not an issue, since
the HbO image is relatively robust to wavelength selection. In
addition (and as the best wavelength distributions in Figs. 8–10
demonstrate), for every chromophore the most accurate images
are created by using a spread of wavelengths over the NIR
range.

The minimum and maximumMSE values increase for every
image type (HbO and HbR, as well as the HbAll matrix) from
the 4, to 3, to 2 wavelength combinations. As can be seen by
comparing Figs. 4 and 5, the MSE drops significantly when
one moves from the 2 wavelength to the 3 wavelength case
(for example, from 0.011 to 0.0059 a.u. respectively for
HbR). However, there is a smaller reduction in MSE from
the 3 wavelength to the 4 wavelength images (0.0059 to
0.0037 a.u. respectively for HbR), implying that having a
DOI system that emits at three different wavelengths may

Fig. 7 The 10 best and 10 worst combinations of 3 wavelengths, ordered by HbAll MSE are shown in (a),
whereas the associated MSE values are shown in (b).
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be the optimal balance between efficiency, cost, and image
reconstruction accuracy.

There are also some features of our results which could not
be predicted by theoretical approaches. Figure 6 shows that the 2
wavelengths that yield the smallest error for the HbAll matrix
are 770 and 810 nm, which are closer together on the NIR spec-
trum than previous investigations of wavelength selection for
NIRS21 (though more typically combinations such as 770 and
850 nm also produce similarly accurate reconstructions).
Furthermore, the combination of 770 and 790 nm also produces
a lowMSE, despite both wavelengths being below the isosbestic
point. An additional unexpected result that can be seen through-
out the data is that the majority of the best wavelength combi-
nations do not include the wavelengths at the top and bottom of
our wavelength range (i.e., 690 and 870 nm), which means the
optimal images are not necessarily produced by using wave-
lengths with the largest range across the NIR spectrum. For
example, the best combinations of 3 wavelengths are all in the
range of 730 to 850 nm. The upper wavelength 870 nm is
included only once in the HbAll best 4 wavelength combinations
(Fig. 8), not at all in the best HbO 4 wavelength combinations
(Fig. 9), and is only included in two of the best HbR 4

wavelength combinations (Fig. 10). The consistent selection
of certain wavelengths and lack of others implies that a balance
exists between four key factors: (1) light penetration through
biological tissue at a given wavelength, (2) the sensitivity of
a given wavelength to functional changes in HbO and HbR,
(3) the power spectrum of MONSTIR II’s supercontinuum
laser, and (4) the wavelength-dependent detector sensitivity
of MONSTIR II’s PMTs.

The higher absorption of lower wavelengths of NIR light by
human tissues will decrease the efficacy of wavelengths at
the lower end of our tested range. However, the relatively
low amplitude of the functional HbR signal will bias wave-
length selection toward this lower part of the NIR spectrum.
Conversely, on the upper side of the NIR range, spectral varia-
tion in detector sensitivity will also have an impact on wave-
length selection. This is because the PMT detectors present in
MONSTIR II exhibit a relatively flat sensitivity profile between
600 and 860 nm, which quickly drops off at higher wave-
lengths.22 This helps to explain why very few of the best wave-
length combinations for any of the chromophore images include
870 nm. Additionally, the intensity of MONSTIR II’s source
reaches a maximum at ∼800 to 810 nm and tapers on either

Fig. 8 The 10 best and 10 worst combinations of 4 wavelengths, ordered by HbAll MSE are shown in (a),
whereas the associated MSE values are shown in (b).
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side,22 with a power output at 670 nm that is ∼20% that of the
peak. This will have the effect of squeezing the range over which
high-quality data (and, therefore, accurate images) can be
obtained. The regular occurrence of 770 nm and the rarity of
lower and upper wavelengths among the best combinations
of 2, 3, and 4 wavelengths, along with the occurrence of one
of the best combinations of 2 wavelengths being both below
the isosbestic point, is likely a reflection of the combined effect
of the four key factors mentioned above.

A major result of this experiment is that within certain limits,
our 4 wavelength system appears relatively robust to the choice
of wavelengths. The MSE values typically remain low for a wide
range of combinations. There are only 15 combinations of
4 wavelengths that yield an HbAll matrix MSE above 0.05
(arbitrary units, but equivalent to a mean error of ∼20% of
the average HbO concentration change observed).

It should be noted that our image reconstruction procedure
employed a single atlas space for all four subjects. Despite the
fact that the optode locations were based on the 10-20 system
and were, therefore, subject-specific, the underlying anatomical
structure was assumed to be equal to a population average. This
will introduce an additional error, which has been quantified in

previous studies.33,34 However, given the fact that our approach
is based on a comparison of reconstructed images, the impact of
the head model itself will be relatively minor and is unlikely to
affect the wavelength selection.

Although there are a number of theoretical approaches that
allow the estimation of the optimum wavelengths,20,21 our inten-
tion was to present an approach that is driven by experimental
data, and thus takes into account aspects that can be difficult to
include in simulation. These include factors which affect all
NIRS and DOI systems, such as the wavelength dependence
of the optical properties of tissues of the head, which tend to
more heavily absorb lower wavelengths and thus reduce their
SNR. Other factors are system-specific, such as the wavelength
dependence of laser source power, detector sensitivity, and
optical fiber transmission.

Although the general results of this data-driven wavelength
analysis are potentially applicable to other systems, the exact
results are specific to our tomography system, MONSTIR II.
However, the method of using real functional activation data
and image-based error minimization can be applied to other
multispectral systems, providing an explicit experimental
assessment of optimum wavelength combinations.

Fig. 9 The 10 best and 10 worst combinations of 4 wavelengths, ordered by HbO MSE are shown in (a),
wheras the associated MSE values are shown in (b).
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5 Conclusions
We successfully obtained functional response data with a
time-domain DOI system using a right-handed finger-tapping
task. This data was used in an image-based optimization pro-
cedure to determine the best combinations of 2, 3, and 4
wavelengths to reconstruct images of functional changes in
HbO and HbR. The optimum combination of 4 wavelengths
for reconstructing images of functional activation using
MONSTIR II is [730, 770, 810, 850] nm, which is likely
the result of a balance between factors including the absorp-
tion spectra of human tissues, the relative sensitivity to
changes in HbO and HbR, and the wavelength-dependence
of MONSTIR II’s supercontinuum laser source and PMT
detectors. Although theoretical calculation of optimum wave-
length selection for DOI is an important process, our results
demonstrate the necessity of also performing a data-driven
analysis for any given imaging system.
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