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ABSTRACT  

Quantum key distribution (QKD) is a technology to securely share keys against any attack physically permitted, with 
the principle of quantum mechanics. In recent years, the satellite QKD, which employs artificial satellites as trusted mobile 
nodes, has been attracting attention in order to overcome the bottleneck of transmission distance. However, in the satellite 
QKD, quality degradation due to atmospheric effects is expected, as in ordinary satellite laser communications. Therefore, 
it is desirable to apply an error-correcting code (ECC) that has high error-correcting performance even under the 
atmospheric-induced effects to the error-correcting process of the satellite QKD. Therefore, in this paper, we examined 
the application of polar codes, which is known as an ECC with high error correction capability. First, in order to optimize 
the error correction efficiency, we propose a method to adaptively obtain an appropriate code rate for the received signal 
strength that changes momentarily due to atmospheric effects. Then, we compare the throughput performances with polar 
codes to it with low-density parity-check (LDPC) codes, with the numerical simulation assuming Bennett-Brassard 1984 
protocol (BB84). 

Keywords: Free space optics, satellite laser communications, quantum key distribution, information reconciliation, polar 
codes, low-density parity-check codes 
 

1. INTRODUCTION  

Various encryption technologies have been developed to meet the fundamental needs to transmit information to a specific 
person at a distance without being known by a third party. Nowadays, various information is encrypted, from credit card-
based personal identification numbers (PINs) to social networking service (SNS) conversations. However, the security of 
current encryption technologies is based on the assumption of computational resources available to eavesdroppers, and it 
is concerned that the decryption will be available by the progress of computer technology. Quantum key distribution (QKD) 
[1, 2], on the other hand, is a key establishment method that does not require any assumptions on the eavesdropper's 
computational resources. In QKD, a key is generated from a random number shared between the sender and the receiver 
via photon transmission. Because an eavesdropper cannot attack without destroying the photon's quantum state, the trace 
of attack is left in the quantum bit error rate (QBER). This makes key establishment secure against all physically allowable 
attacks. Although QKD has already been studied for practical use [3, 4], fiber-based terrestrial QKD systems suffer from 
photon absorption in the fiber, limiting the key generation rate and the transmission distance. Recently, satellite-based 
QKD systems [5] are attracting much attention to overcome the bottleneck., continental-scale QKD can be realized by 
employing a satellite as a trusted node. However, there is a concern that the atmospheric effects, which affect the 
performance of satellite laser communications, such as fading-induced burst errors, may also have some impact on satellite-
based QKD. Therefore, error-correction schemes exploited in satellite-based QKD are required for robust transmission 
against such atmospheric-induced effects. 

As such an error-correction scheme appropriate for free-space optical (FSO) links, we have studied polar codes [6] 
because of their capacity-achieving performance and low computational complexity in encoding and decoding. Our past 
transmission experiment over the 7.8-km terrestrial FSO link between the University of Electro-Communications in Chofu, 
Tokyo, and the National Institute of Information and Communications Technology (NICT) in Koganei, Tokyo revealed 
that polar codes have high performance in real FSO channels [7]. 
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Motivated by our previous experiments, we propose a new high-efficiency error correction method based on polar codes 
for free-space QKD systems. Unlike the uni-directional message transmission, QKD aims to share random numbers, and 
error correction is performed in the post-processing manner. This means that the code rate of polar codes can be finely 
configurated by adding or deleting parity bits. Although the application of polar codes to QKD has been studied in [8], a 
rate-variable error correction based on polar codes is firstly proposed in this paper. In this paper, as a basic study for 
applying polar codes to QKD, we derive a relation between code rate and QBER by numerical simulation to optimize the 
error correction efficiency. We then numerically compare the performance of our proposed scheme to that of LDPC codes. 
As a result, we reveal that polar codes have an advantage over LDPC codes in the short-code-length regime, in information 
reconciliation for free-space QKD. 

The rest of this paper is organized as follows; Sections II and III review the encoding and decoding methods in polar 
codes and QKD basics, respectively. Section IV shows the description of the proposed method and the experimental results 
by numerical simulation. Finally, Section V gives the conclusions. 

2. POLAR CODES  

2.1 Encoding 

Polar code is an error-correcting code (ECC) introduced by E. Arikan in 2009 [6]. It is shown that polar code achieves 
encoding and decoding with low complexity of  for a code length of , where  is a natural number. The 
encoding exploits a property called channel polarization, which is outlined below. 

We consider that we input a sequence with a length of  bits into a stationary memoryless binary symmetric channel 
(BSC) . Let  denote the mutual information of the BSC. The input sequence is subject to the following matrix 
operations: 

(1) 

where  is the identity matrix of order ,  denotes the Kronecker product, and  is a reverse shuffle matrix that 
rearranges the input bit sequence with even numbers in the first half and odd numbers in the second half. The matrix  is 
defined by 

. (2) 

By applying the inverse operation of  onto the output sequence results, a  fraction of the sequence is retrieved 
correctly, whereas a  fraction will results in an error with a probability 1/2 in the limit of . This 
phenomenon, known as channel polarization, allows polar codes to achieve error correction performance close to the 
Shannon limit. 

A sender allocates the transmission data into the  fraction of the sequence (message bits). She fills the  
fraction of the sequence (frozen bits) with random bits, and announces their values and locations to the receiver in advance.  

The code rate, the ratio of the message bits to the total bits, becomes , which is the channel capacity of BSC.  

2.2 Decoding 

The decoding method for polar codes is called successive cancellation decoding (SCD). In SCD, recursive estimation of 
codewords based on the log-likelihood ratio (LLR) is performed in the ascending order of every bit. When the vertical 
index is  and the horizontal index is , the LLR at each point is  and the estimated bit is . Here,  and  satisfy the 
following conditions: 

(3) 

(4) 

The first step of decoding is to convert the received value of each bit  into the LLR . For a BSC with crossover 
probability ,  is given as  
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 (5) 

Then, the LLR  at each point can be computed as follows 

(6) 

where , , and  are defined by 

(7) 

Finally, the estimated bit  at each point is calculated by 

(8) 

where  denotes  and  returns 1 if the index  is a frozen bit, and 0 otherwise. After LLR calculations, 
the estimated codeword  is outputted. 

For the decoding of polar codes, SCD was first proposed, and its improved version, successive cancellation list decoding 
(SCLD) [9], was also proposed. In addition, CRC-aided SCLD (CA-SCLD) [10], which is concatenated with cyclic 
redundancy check (CRC) codes, has been proposed as an improved version of SCLD, and it can outperform low-density 
parity-check (LDPC) codes. 

3. QUANTUM KEY DISTRIBUTION  

3.1 The flow of the QKD protocol 

We briefly review the flow of QKD based on the Bennett-Brassard 1984 protocol (BB84) [1], which was the first proposed 
QKD protocol. In BB84, random numbers are encoded into a single photon's polarization state. A sender (Alice) generates 
a random bit sequence, selects one of two pairs of polarization directions,  or , and rotates the photon 
polarization to the corresponding direction. For example, to transmit bit 0, the photon polarization is rotated to  or . 
Bob also randomly selects the basis from  or  when he receives a photon from Alice. If the Alice’s 
and Bob’s basis match, the bit is retrieved correctly, but if a different basis is selected, an error occurs with a probability 
of 50%. Such random selection of basis is necessary to ensure security against Eve. For example, Eve would tap a photon 
sent by Alice, obtain the random bit from it, and retransmit a copy of the photon to Bob. However, Eve needs to select 
Alice’s basis randomly, just as Bob does. Therefore, even if Alice and Bob's bases are identical, this operation will induce 
errors in the bit values. After completing random number transmission, the sifted-keys are created by notifying the 
receiving time and matching Alice’s and Bob’s bases via an authenticated public channel. When this operation is performed, 
the bit positions that were in different bases between the sender and receiver are notified, and the bits are eliminated. If the 
protocol is implemented under ideal conditions, the sifted-keys are identical, but errors are caused by imperfections in the 
optical system, bit errors due to dark counting in photon detectors, and Eve's attack. Therefore, by exchanging information 
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over the authenticated public channel, the error is corrected and the leakage information is removed. This sequence of 
operations is called the key-distillation processing. 

The key-distillation processing roughly consists of (A) QBER estimation, (B) information reconciliation, and (C) privacy 
amplification. First, in (A), the QBER is estimated using a test bit sequences composed by random sampling from the 
sifted-keys. If the error rate exceeds the specified value, the session is discarded because the information leakage to Eve is 
too large to be removed by this key-distillation process. Then, in (B), the sifted-keys of Alice and Bob are error-corrected. 
Alice and Bob calculate the parity bits for error correction from their sifted-keys and exchange them on the public channel. 
Finally, in (C), privacy amplification, the final key is obtained by compressing the sifted-key after information 
reconciliation by the amount of leakage information estimated from the QBER. 

3.2 Information Reconciliation 

In this paper, we apply polar codes to (B) information reconciliation step in the above key-distillation processing. 
Although there are several methods for calculating the parity bits disclosed in this step, we adopt Dodis's method [11]. In 
this method, a codeword  is randomly generated by an ECC encoder of , and the exclusive-OR (XOR) of the 
codeword and the sifted-key is transmitted to the other party via the public channel. This method has been implemented in 
various systems [12, 13] because of its simplicity. Also, the cost of authentication is low because the authenticated public 
channel is used only once. Figure 1 shows the flowchart of Dodis's method. First, Bob determines an appropriate code rate 

 based on the QBER  and transmits  value to Alice. Next, Bob generates a random bit sequence of  bits, 
where  is the ceiling function and  is the length of the sifted-key. Then, these  bits are encoded into  bits codeword 

 by an ECC with the code rate of , and XORed into Bob's sifted-key  as . Alice obtains the bit sequence 
 by XORing her sifted-key  with the received codeword, resulting in the error pattern  onto 

. This error can be removed by decoding the received sequence  because of  encoding, and the 
random number generated at Bob can be correctly transmitted to Alice. This  bits are the reconciled key. Note that 
we consider the case where Bob transmits the parity bits, and this method is generally called reverse reconciliation. It can 
generate keys more efficiently than the case of direct reconciliation in which Alice transmits keys. Therefore, it is widely 
used in continuous-variable QKD [14, 15] and other similar protocols [12, 16] as well as BB84. 
 

  
Figure 1. Flow chart for information reconciliation. 

 
 
 

XOR
codeword

random bit sequence

Alice’s sifted-key Bob’s sifted-key

bit bit

bit

encoder

decoder

reconciled key reconciled key

ICSO 2020 
International Conference on Space Optics

Virtual Conference 
30 March-2 April 2021

Proc. of SPIE Vol. 11852  118525L-5



 
 

 
 

 
 

4. NUMERICAL RESULTS OF PROPOSED METHOD  

4.1 Performance indicator 

In this paper, we construct an efficient transmission scheme that makes the ratio of the length of the successfully 
information-reconciled bit sequence  to the length of the sifted-key , , as large as possible. At first, 
instead of encoding a random bit sequence of length  with a single codeword, we consider dividing it into  blocks of 
length  and encoding them. The following equation holds: 

(9) 

Then, we define block error rate (BLER) as the ratio of unsuccessful decoding to  expressed by 

(10) 

where  is the number of unsuccessfully decoded blocks. Because  is the product of the information length  and 
the number of successfully transmitted blocks, it can be denoted by 

(11) 

Then,  can be transformed as follows. 

(12) 

where  is the code rate defined by . In this paper, we specify  as the evaluation function called 
throughput. In numerical simulations, we assumed that the errors in the sifted-key are symmetric for the bit 0 or 1, that is, 
BSC. Furthermore, the QBER estimation is assumed to be perfect. 

4.2 Performance of polar codes 

We simulated the polar code transmission in information reconciliation described in Section 3, in which the simulation 
conditions are shown in Table 1. Figure 2 shows the results of the throughput performances when the code rate 

 in (12)  and the crossover probability  are changed. It can be seen that the throughput performances of high-rate polar 
codes are superior when  is small, and those of low-rate polar codes are superior in high  region. As shown in the 
figure, the crossover probability region with superior throughput differs depending on the code rate, and it is necessary to 
change the code rate according to  for more efficient transmission. 
 

 
Figure 2. Throughput performances of polar codes. 
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Table 1.  Simulation conditions of polar codes. 

Code length  2048 
Information length  768 to 1536 

Code rate  0.375 to 0.75 
Decoding Successive cancellation list decoding[9, 10] 

Parity length of cyclic 
redundancy check 24 

 

 
Figure 3. Throughput performances versus code rate . 

 

 
Figure 4. Proposing rule to select the optimal code rate of polar codes. 
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4.3 Optimization of information reconciliation applied polar codes 

Based on the discussion in the previous section, we derive an equation relating the code rate  and the crossover 
probability  to obtain the best throughput for polar codes. First, Figure 3 shows the throughput performances when  
is changed by gradually increasing the number of frozen bits with a fixed crossover probability. This figure shows that for 
each crossover probability, there is an optimal code rate that maximizes throughput. Figure 4 shows a graph rearranging 
these points, with the crossover probability on the horizontal axis and the code rate on the vertical axis. We derived the 
following approximation equation as the selection rule for the code rate  from the curve in Figure 4. 

(13) 

 

4.4 Application of LDPC codes in the conventional method 

As a benchmark against polar codes, we calculated LDPC codes' performance under the conditions shown in Table 2. 
Figure 5 shows the throughput performances of the LDPC codes versus  with the parameter of code rate  in 
(12) . Using the five LDPC codes shown in the figure, the selection rule for the code rate  optimizing the throughput 
performances can be derived as 

(14) 

It can be seen that the throughput performances are superior for high-rates in the small crossover probability region and 
low-rates in the large crossover probability region, as well as in Figure 2. 
 

 
Figure 5. Throughput performances of LDPC codes. 
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Table 2.  Simulation conditions of LDPC codes. 

Code length  2048 
Information length  512 768 1024 768 1536 

Code rate  0.25 0.375 0.5 0.625 0.75 
Decoding Sum-product decoding 

Weighting of parity-check 
matrices (3,4) (5,8) (3,6) (3,8) (3,12) 

The maximum number of 
reprising decoding 20 

 

 
Figure 6. The comparison of optimized throughput performances. 

 

4.5 Performance comparison of the proposed method to LDPC codes 

Figure 6 compares the throughput performances of LDPC codes and polar codes based on the selection rules obtained 
above. It is shown that the throughput performances of polar codes are higher than those of LDPC codes in all areas. 
Therefore, the application of polar codes to satellite QKD is expected to improve information reconciliation efficiency. 
LDPC codes can also have finer coding ratios, but it is necessary to share the parity-check matrices for all code rates in 
advance. However, polar codes have the advantage that no matrix share is needed. 

5. CONCLUSION 

In this paper, we proposed applying polar codes to the information reconciliation step to increase the efficiency of key 
distribution in QKD and evaluated its performances. First, we chose the throughput as the measure of the efficiency of 
information reconciliation. Then, we derived the throughput performances for different code rates and crossover 
probabilities by numerical simulations. From these results, we derived a selecting rule of code rate that maximizes 
throughput for each crossover probability, constructed a polar code with the best throughput performances for information 
reconciliation, and confirmed the improvement of its performances. Then, We compared the polar codes with the LDPC 
codes in the region where the crossover probability is less than 10% and confirmed the superiority of the polar codes in all 
regions. In the future, we plan to study concatenating with rateless codes in order to improve the performance of the system, 
including (A) QBER estimation in addition to (B) information reconciliation. 
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