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1 Introduction

Abstract. There is increasing attention to prevention as a means to
reduce cancer incidence. Prevention interventions or therapies in turn
rely on risk assessment programs to identify those women most likely
to benefit from education and lifestyle changes. These programs are
usually based either on interviews to identify ethnic, genetic, and lif-
estyle factors contributing to risk or on physical examination of the
breast. For the latter it has been shown that the parenchymal density
pattern observed in X-ray mammography can be used to assess an
individual’s risk. Extensive areas of dense, glandular tissue that are
relatively radio-opaque are associated with higher breast cancer risk,
with an odds ratio of 4 to 6 compared with women in whom the
breast density is low owing to an abundance of adipose tissue. Near-
infrared optical transillumination spectroscopy has been used previ-
ously to investigate the physiological properties of breast tissue. In this
study, women were recruited who underwent recently X-ray mam-
mography. The tissue density was assessed by a radiologist. The
women then underwent optical transillumination spectroscopy, for
which an instrument was developed that delivered visible and near-
infrared light to the breast. After being transmitted through the breast
craniocaudally in one of four quadrants, the spectrum from 625 to
1050 nm was measured. The spectra were used as input to a Principal
Component Analysis (PCA) that used the corresponding mammo-
graphic density as the reference standard. The study group consisted
of 92 women aged 39 to 72 years. Without further stratification for
age, menopausal status, or measurement position, the PCA numerical
model predicted the radiological assessment of tissue density in the
mid 80% to low 90%. © 2004 Society of Photo-Optical Instrumentation Engineers.
[DOI: 10.1117/1.1758269)
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Currently, imaging by X-ray mammography, ultrasound,

Breast cancer is the most commonly occurring cancer in @nd/or -magnetic resonance imaging are the primary
women. In Canada, the lifetime risk of being diagnosed with Modalitie$ used for breast imaging. These modalities use
breast cancer is approximately 1 in fhe highest out of all physical or chemical differences in tissue, such as the radia-
cancers for women. The probability of dying of breast cancer tion attenuation coefficient, water content, or physical density,
is 1 in 25, which is second only to lung cancer among all 0 observe differences in the tissue morphology that may sug-
cancer-related deatfdviost other developed countries are re- gest aberrant growth associated with cancer.

porting similar probabilities for diagnosis and death. Breast ~ While the understanding of the mechanisms leading to
cancer screening programs have been shown to decrease th@reast cancer is increasing, they are still not fully understood,
mortality rates of women between ages 50 and® 6%jce although it is apparent that the development of breast cancer
cancers are detected at an earlier, more easily cured stages @ slow process following initial transformation of the breast
Conversely, the overall incidence of breast cancer is still ris- tissue> There is currently an effort within the research com-
ing, possibly owing to the increasing age of the population. munity to understand risk factors for the disease that are ex-
hibited before or during this slow transformation process, but
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terventions to reduce risk. Risk factors are defined as those
characteristics that are more common in people with the dis-
ease compared with the population at latdrisk factors re-
lated to breast cancer include age, country of residence, first-
degree relatives or personal history of breast disease, genetic
factors, anthropometric factors, menstrual and physiological
factors all commonly combined into the Gail scéfeprovid-

ing a numerical risk quantifier for the next decade or an indi-
vidual's lifetime.

Although screening and risk reduction intervention have
been shown to benefit the entire population at risk, for an
individual member of the high-risk population, the risk-
benefit ratio may not be favorablélo maximize the benefit
for the individual as well, the relative risk quantifier employed
is very large, so that most of the high-risk group members are
identified while the quantifier minimizes the inclusion and
hence exposure of low- or medium-risk subjects to potential
side effects of the risk reduction interventions. Risk reduction
interventions can be as benign as modifications to a subject’s
lifestyle, exercise, and diet, which has been shown to reduce
the relative area of mammographic densities after 2 y@ams,
they can be invasive, such as chemoprevention, including the
use of tamoxifet! aromatase¥ and prophylactic
mastectomy?

Increased fibroglandular tissue in the breast that has a high
X-ray attenuation coefficient, thus appearing bright in stan- Fig. 1 Examples of X-ray-based mammograms showing breasts with
dard mammograms, is a known physiological risk fattot! either (a) high or (b) low tissue density. Note: Different X-ray expo-
Areas appearing radiologically lucent represent fatty tissue of sures were used for the two examples.
the breast that is rarely the source of aberrant growth. Radio-

logically opaque tissue is a common source _of car_cinomas,through the skin. The skin's varying melanin contéfepend-
and consequently, the relative area of dense tissue is a strongng on ethnicity and sun exposrean affect the transmission

risk factor. See Fig. 1 for examples of high and low X-ray gpectrum, and hence may limit the predictive value of transil-
dense breast tissue. Commonly, breast tissue density is quanymination spectra because the melanin content does not af-

tified following breast cancer screening visits and it has been ot preast cancer risk. While quantification of skin color is
SUQQeSt%d that it can be affected by hormonal and dietary fgagihle based on diffuse reflectance spectrostbppd can
changes! o , permit subtraction of melanin-associated absorption, it was
Parenahymal density is used as the standard risk assessyqt gone in this study, and participants were not stratified for
ment toot* in the study presented here because it provides the gyin color or ethnic background, in order to obtain densities
best available standard for risk in a cross-sectional study.  gnq risk classifications that were independent of ethnicity.
Breast tissue is a highly light-scattering medium and has — gpical transillumination spectroscopy is not an imaging
relatively low absorption in the red and near infrared wave- iochpique and thus only bulk tissue properties are obtainable
length range, resulting in an adequate penetration depth ofyng are characterized through spectral shape and intensity
light. This allows a sufficient number of photons to be de- analysis. Hence, for comparison with mammographic-

tected in a few seconds traversing through up to 7 cm of yatarmined risk, the X-ray images were classified only as low,
breast tissue while maintaining the incidence power below megiym, or high tissue density, omitting spatial information
government guidelines for exposure of skin. about the density pattern.

Previous diagnostic studies of breast tissue showed that  1yg jnyestigation was set up as a cross-sectional study to
quantification of water, lipids, hemoglobin, and other tissue g 5)ate the feasibility of detecting and quantifying breast tis-
chromophores is feasible using near-infrared spectros€opy. g e density as an intermediate to risk predicfiomivo using
Fibroglandular tissue is expected to result in increased waterisiple and near-infrared transillumination spectroscopy. The
a}r_]d simultaneous decrea_sed lipid-associated absorption, 'de”hypothesis is that optical transillumination spectroscopy pro-
tifiable through absorption peaks at 978 and 930 nm, yijes information consistent with conventional mammogra-

respectivel§” (Fig. 2. It is also expected to have a hli]?her phy in quantifying breast tissue density and hence, indirectly
scattering efficiency than adipose tissue, as seen in Fi§. 3. preast cancer risk, with an odds ratio comparable to that of
Finally, hemoglobin(Hb) can be identified by an absorption mammography.

peak at 760 nm, while oxygenated hemoglobitbO,) has
only a low and broad absorption, with a local maximum close 2 Methods
to 920 nm?? )
Transillumination spectroscopy has been shown to detect2-1 Instrumentation
the presence of breast canéem this method, light emitted  The clinical spectrographic system, designed and built in-
from the opposite side of the breast passes at least twicehouse, is shown as a schematic in Fig. 4. A 12-W halogen
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Fig. 2 Absorption spectra of some major chromophore constituents in
breast tissue, including (a) water (gray) and lipid (black) and (b) he-
moglobin (black) and oxygenated hemoglobin (gray).'®
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Fig. 4 Setup schematic of transmission measurement system, consist-
ing of a continuous wave white light source, optodes (liquid light
guide and fiber bundle in the caliper mount), breast support, spectro-
photometer, and central processing unit.

liquid light guide(Kaiser Electronics, San Jose, Caliplaced

in contact with the top of the breast. The total radiant power
delivered to the skin surface was250 mW. The transmitted
light was collected by a custom-made 7-mm diameter optical
fiber bundle(P&P Optical Kitchener, Ontario, Cangdthat

was positioned coaxially with the source guide. The light
guides were mounted in a caliper, the separation of which
could be adjusted by hand so that both optodes were in con-
tact with the breast. Contact of the source guide was firm,
with the breast compressed locally by not more than 5 mm to
ensure good coupling to the tissue. The holder for the source
guide and the plate in which the detector guide was embedded
were made of black plastic to model matched boundary con-
ditions. During spectral measurements, the subject was seated
and each breast in turn rested comfortably on a support plate,
the height of which could be manually adjusted. No pretreat-
ment of the skin surface was required.

power supply was used as the broadband light source. The  1he collected light was spectrally dispersed using a high-

ultraviolet, short-visible and midinfrared regions of the spec-
trum were blocked by a cutoff filtef<550 nm and a heat
rejection filter(KG4, Melles Griot, Carlsbad, Caljf.respec-
tively. The remaining light in the 550 to 1300-nm range was
coupled by a 20-mm focal length lens into a 5-mm diameter
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Fig. 3 Graph of the scattering coefficient (u;) of adipose (black) and
fibrous (gray) breast tissue in the wavelength range of interest.
(Adapted according to Troy et al.'").
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throughput holographic grating15.7 lines/mm:, Kaiser,
Carlsbad, Californipwith a 0.5-mm entrance slit and detected
with a 2-D, liquid nitrogen-cooled back thin silicon CCD ar-
ray (F-125, Photometrics, New Jergeyhe spectral resolu-
tion was <3 nm (FWHM) over the 625- to 1060-nm band-
width. The peak quantum efficiency of the detector wdk8

at 780 nm, falling to 0.2 at 1100 nm. The entrance slit of the
spectrometer was imaged onto 50 rows of the CCD, thus in-
creasing the dynamic range by over 25 fold. The dark count
was ~0.06 electrons per hour. Further noise reduction was
achieved using exposure times of@3 s and averaging up to

5 scans. The system’s dynamic range was OD (optical
densitie$ with a signal-to-noise ratio of10 to 10* across the
spectral range.

This study was approved under the institutional review
boards of the University of Toronto and the University Health
Network, with informed consent. Women were recruited
through the Marvelle Koffler Breast Center at Mount Sinai
Hospital, Toronto. All had prior mammograms within 12
months of the spectral measurement, classified by a radiolo-
gist (RJ) as either low(<25%), medium(25 to 75%, or high
(>75%) tissue density* Women showing large variations be-
tween both sides of the bilateral organ were not included in
this analysis.
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Table 1 Tissue density distribution for recruited volunteers and for population proportions from the
National Breast Screening Study (ages 40 to 59).”'

Premenopausal Postmenopausal
Study  Population

Density Training  Validation Training  Validation Proportion  Proportion

Category Set Set Total Set Set Total  Total (%) (%)

Low 4 1 5 25 8 33 38 41 37

Medium 13 5 18 13 5 18 36 39 49

High 8 3 11 5 2 7 18 20 14
2.2 Measurement Procedure and Spectral set only and the spectral rangen=436 wavelengthg such
Preprocessing that:

The total data acquisition time was approximately 15 minutes
and was completed in complete darkness. A total of 8 spectra
were collected per subject, representing medial, distal, lateral,
and central quadrants of each breast. To date, a total of 92
women have been entered in the study, of whom 58 are post-PCA decomposes the data matkixas the sum of the outer
menopausal. The wavelength dependence of the sensitivityProducts of the scalars df and vectorsp; and a residual
was corrected daily by normalizing the transillumination MatrixE:

spectra made through a standard consisting of 1-cm thickness,

ultra-high density polyurethanéGigahertz Optics, Munich, X=t,p] +t,p;+tapz+...+tip/ +E

Germany, which has a very flat attenuation spectrum. All
tissue spectra are given as optical density relative to this stan-°"
dard. Further preprocessing of spectra included correction for
the tissue thickness by calculating the OD/cm at each wave-

length. Autoscaling of the spectra, was done by normalizing \yhere the elements of the(nx 1) vectors are the scores that
the spectrum to the average spectrum off all spectra containedygnain information on how the spectra relate to each other,
in the training set data for PCA model developmese later 5 thep, vectors(mx 1) or components are the eigenvectors
discussiof, whereas spectra in the validation set were scaled o the covariance matrix that relate the selected variances to
using the same mean spectra. Principle component analysis,ach other.
requires random splitting of the dataset into a training setto 1,4 scores(elements oft;) can be graphically plotted
iteratively optimize the algorithm and a training set to verify ,qainst one another to show clustering of related spectra. The
that the optimization can be generalized to all available spec- p-p algorithm was trained on a test get=544) and the
tra. same mathematical model, i.e., retaining fhe was used to
determine the scords on the validation set that consisted of

2.3 Data Analysis the remainingn, =192 spectra.

The statistical significance for the PCA prediction was es-
tablished using the high-density meas#DM), which is

XTX

n—1

couX)= 1

X=TPT+E, 2

The radiological classification produces a scalar quantity,
namely the mammographic density, and the optical SF)ec'[rumdefined as the ratio of spectra predicting a woman as having

is a vector. Hence, only multivariate analysis techniques that . X : -
are able to correlate vectors with scalars and that have beenhlgh mammographic density by the PCA algorithm compared

) . L - with those categorized as having high tissue density by the
used extensively for different applications requiring the analy- . ; - -
sis of complex spectra, such as in chemometfiznd spec- radiologist. Conversely, the low-density meas(IrBM) rep-

Fosnc s medea L e [N 0 0l o corecty ey e specr o
considered’”? Typically, these methods involve first a “train- Y. :

ing” step to identify the variance within a set of spectra and similar to sensitivity and specificity, respectively.

subsequently, a “prediction” or “validation” step to deter-

mine the accuracy of a separate set of spectra in predicting the

outcome, which in this case is the tissue density classification. 3 Results

The specific analytical technique used here is Principal Com- The dataset includes mammograms and spectral results from

ponents AnalysigPCA). 92 subjects(aged 36 to 72 yearsFifty-eight women were
Mathematically, the PCA procedure is as follows. First, the postmenopausal, of whom 33 were classified as having low,

spectral data are reduced in extent, while preserving the maxi-18 medium, and 7 high mammographic density. Of the 34

mum amount of varianc€. This is accomplished by solving  premenopausal women, 5, 18, and 11 were classified as hav-

for the covariance or correlation matrix of the data matrix ing low, medium, and high density, respectively, as shown in

X(mXn) comprising all measured specia= 544, training Table 1. At present, this classification does not reflect the
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Fig. 5 Typical attenuation spectra from the four quadrants of both

breasts in a volunteer. The spectra are corrected for the spectral sys- @

tem transfer function and tissue thickness. Note the good reproduc-

ibility between corresponding sides of the bilateral organ. Distal spec-

tra show the lowest and the center position the highest attenuation.

1.1 1

distribution observed in the general population during the Ca-
nadian National Breast Screening Stdehjput recruitment is
continuing.

Figure 5 shows a typical set of measurements, consisting
of 8 spectra from a single subject. Spectra from corresponding
quadrants on each breast are very similar, a fact used by Egan
and DolaR? as a negative predictor for the absence of breast
cancer.

While transillumination is a local measurement, neverthe- Wavelength (nm)
less a large volume of tissue is interrogated at each position (b}
(estimated as 25 chrfor a 5-cm breast thicknessFor posi-

+Attenuation

0.8 T T
585 785 985

tions close to the circumference of the breast boundary, lossed 8- ¢ Effect of boundary losses at the breast circumference. (a) At-
! tenuation spectra from a volunteer at various distances from the breast

wil aﬁ_eCt the overall intensity of the transmitted Spec';ra_ and circumference (center position black, medial position dark gray), 2 cm
could influence the spectral shape; thus they could limit the fom circumference (gray), and 1 cm from circumference (light gray).
predictive value of the transillumination technique. Hence, re- (b) Ratio of the same spectra over the average of all four spectra to
peat measurements were made in one subject, starting at thexaggerate spectral variance that is due to boundary losses.
center position and moving toward the medial position and
beyond toward the circumference of the breast. The resulting
transillumination spectra are shown in Fig. 6, indicating that cluster plot of the scores fd§ andt, as shown in Fig. 1@&)
the overall aborbance is wavelength independent up to a dis-present data for the low and high tissue density classes only,
tance of 1 cm from the circumference of the breast, where the which is similar to mammography-derived tissue densities.
losses increase and become wavelength dependent. ThusThe odds ratio for risk is calculated based on the difference of
measurements where taken at least 1 cm from the circumfer-these two extreme classes. Here the cluster plot shows dis-
ence of the breast. crimination of the breast tissue density across a diagonal line
The reproducibility of the optical transillumination mea- in thet, versust, space. Based on a physiological interpreta-
surements was analyzed by repeat procedures on one subjedton of the information carried by the principal components,
during visits over a period of 18 months. Figure 7 shows the p; andp, quadrants indicating scattering power and relative
correlation of thet; andt, scores from two of the repeat water to lipid ratios are indicated.
spectra. Component scoré, andt,) vary between quad- Spectra that had not been corrected for thickness were used
rants, but cluster tightly for a given position, indicating that to determine the effect of thickness on the shape of the com-
the spectroscopy data are reproducible. Figure 8 shows theponent vectorg, to p, [Fig. Ab)] and the resulting cluster
reconstruction of a randomly selected transillumination spec- plots oft; versust, [see Fig. 1(b)]. The component spectra
trum, according to the variance captured onlygyandp,, are almost identical to the thickness-corrected components,
as well as that captured by the first four components in whereas the cluster plots of versust, show discrimination
thickness-corrected spectra. The reconstruction from all four as a function oft, only. The reproducibility of the principle
components shows a good representation. components between thickness-corrected and uncorrected
Figure 9a) shows the principal componen{p;) resulting spectra indicates the general validity of the approach to using
from PCA usingn= 544 corrected spectrq; to p, represent, thickness-corrected spectra in this PCA analysis.
respectively, 97.6, 1.2, 0.6, and 0.3% of the variance in the  Plotting oft; versust, or other combinations of the scores
total dataset, for a combined 99.8% of the variance. While all resulted in poor separation of the low- and high-density clus-
density classes were employed for PCA training, the resulting ters(data not shownand were not further pursued. Similarly,
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Fig. 7 Repeatability of t; and t, in one volunteer at all 8 positions. The slope of the regression line is 1.03 and 0.87, and the Pearson correlation
coefficient is 0.72 and 0.84 for t; and t,, respectively.

component spectra and cluster plots were obtained also forautoscaling will not allow the use of principal components
autoscaled and transfer function-corrected spe@eda not filters in future work, as suggested elsewh®&re.
shown. The resulting HDM and LDM values for the different Cluster plots[Fig. 10@)] based on the scords andt,
spectral preprocessing methods are shown in Table 2. Theresulting from thickness-corrected spectra demonstrated that it
symmetry across the same bilateral quadrants for each indi-is possible to differentiate between subjects having low or
vidual is shown in Fig. 11 for all scores ¢f andt, derived high breast tissue densities, which is the basis of determining
from thickness-corrected spectra, reflecting a pool of women the odds ratio for cancer risk based on mammographic
with homogeneous density distribution across both breasts. density*® Adding the medium density class into the HDM and
LDM will not change the former, but will lower the latter by

4 Discussion 0.2 to 0.3, depending on the actual model used.

Bilateral symmetry in the spectra at corresponding quadrants
(Fig. 11) is expected in our study population since it is a
criterion for determining the absence of breast cancer accord-

ing to previous studies by Egan and Dof&n. —_ A
Autoscaling of the spectra prior to PCA modeling removes &
some spectral information since the subtracted mean spectrum 3 q/’“‘
is wavelength dependent. Since the spectral features contrib- © [V st
uting to the discrimination between high and low breast den- g
sity or risk are not known, losing spectral information is not & ™
advisable, even though no significant loss in HDM and LDM g ;\_\74__,
was noted. In addition, calculating component spectra after %
.01 v - - -
625 726 825 925 1025
—pl—p2 p3 p4 Wavelength (nm)
0.15
o B
~ 5 o1
3 ]
g O \/
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AS o /\/
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=y 4
z : %\/;x
<  .0.05 — -
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Wavelength (nm) —p1—p2—p3 p4 Wavelength (nm)
——data spectra ——p1and p2 p1topd
Fig. 9 Plot of components p; to p, (black to light gray, respectively)
Fig. 8 Raw data spectrum (black) and reconstruction using either only from PCA using (a) tissue thickness and spectral transfer function-
the first two components (light gray) or the first four components (gray) corrected spectra and (b) only spectral transfer function-corrected
based on the principal components shown in Fig. 9(a). spectra (derived from 92 volunteers).
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Fig. 10 Cluster plot of t; versus t, resulting from PCA using (a) thick-
ness and system spectral transfer function-corrected spectra and (b)
only spectral transfer function-corrected spectra from volunteers with
high (square) or low (diamond) breast tissue density. Only scores for
the center measurements are shown, with the training spectra shown
as closed and the validation spectra as open symbols. (a) also includes
a physiological interpretation of the data points within the t; versus t,
space.

While PCA models for both native and thickness-corrected
spectra enable differentiation between high and low breast
tissue densities, their; versust, cluster plots differ. In the
model based on native nonthickness-corrected gataannot

Table 2 High-density and low-density measures (HDM and LDM) of
principal component analysis results for test and validation set mea-
surements.

Test Set Validation Set
Data preprocessing HDM  LDM  HDM DM
Transfer function-corrected 84.6% 97.0% 87.5% 90.3%
(Fig. Sb)
Thickness and transfer function- 88.4% 93.1% 92.5% 88.8%
corrected
(Fig. 9q)
Autoscaled—transfer function- 85.6% 94.4% 90.0% 86.1%
corrected (data not shown)
Autoscaled—thickness and 86.5% 91.8% 92.5% 90.3%

transfer function-corrected (data
not shown)
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Fig. 11 Comparison of the (a) t; and (b) t, scores for all quadrants of
the left versus those of the right breasts in volunteers with either high
or low tissue density. Black diamonds represent volunteers from the
training set; gray squares represent those from the validation set. Slope
and Pearson correlation coefficient are 0.94 and 0.76 for t; and 1 and
0.83 for t,, respectively.

differentiate between high- and low-density tissue. The range
of t; values is smaller in the thickness-corrected data, as seen
in Fig. 10@), compared with the nonthickness-corrected data
in Fig. 10b). This is possibly due to the variance added by the
thickness of the physical tissue to the variance in the spectral
dataset introduced. This indicates that the thickness values
contribute to the magnitude gf;, masking other contribu-
tions that could differentiate between tissue densities, such as
light scattering, and thus leaving orly to preserve informa-
tion distinguishing between the two groups of breast tissue
density. Principal component spectra o) based on the
thickness-corrected spectra is de facto wavelength indepen-
dent, but includes losses that are due to the optical path length
(and therefore light scatteringnd losses at the circumference
of the breast. Thé; range of the low tissue density cluster
relative to that of the high-density cluster between the PCA
models based on either the raw spectra or the thickness-
corrected data most likely reflects the fact thatcarries only
approximately 1% of the total variance seen in the dataset.
Preprocessing of the spectra, including thickness correction, is
clinically relevant since it is controllable and it has been
shown that thickness will contribute nonuniformly to the
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spectra, owing to the correlation between lower density and tissues with higher water content and hence cellular content,
larger breasts? require improved vascular supply and thus have an increased
When the autoscaled and nonautoscaled data were comblood volume* Since positivet, scores are related to low
pared, there were minimal changes in the principal componenttissue density and positiig scores are related to low tissue
spectra and minor differences in HDM and LDM values; see scatter, the cluster plot df andt, can be divided into quad-
Table 2. Autoscaling as part of the preprocessing can degraderants as shown in Fig. 18), highlighting the relationship be-
regions with flat or extreme spectral variatihHere, de- tween the spectral features and the known physical attributes
graded spectral features could include regions of the spectrumof breast tissue.
with minimal wavelength dependence and hence, a first de-  While cluster plots based a andt, do not allow good
rivative close to zero. For example, the hemoglobin inflection differentiation between high- and low-density tissue, regions
points are more pronounced in the non-autoscaled data than irof the corresponding component spegikaand p, show in-
the autoscaled components. Conversely, the spectral featureseresting effects. For example, fpg there is a red-shifted
of water and lipids are large compared with other structures in lipid peak and a small blue-shifted water peak, @acshows
the spectra, but are less pronounced after auto scaling. In thisinfluence from both forms of hemoglobin, with the same slope
study, the only difference in the performance of the model is asp, but inverse inflection points. The underlying physical or
in the training set using non-autoscaled spectra having aboutphysiological effects for these observations are unclear at this
2% higher scores for both HDM and LDM. time. While the amplitudes and general shape of the spectra
Principal components can reveal particular regions of the are similar top,, the magnitude of the scores fgrandt, are
spectrum that represent important physical properties or enti-much smaller than those of the first two components, and may
ties within the tissue that contribute to differentiation. Com- represent only relative corrections fpj.
ponent spectrp; andp, are the most important and cover the
highest amount of variance in the dataset. While components
3 and 4 have shapes similar or inverse to that of component 2,5 Conclusions
they take less variance into account. In vivo optical transillumination spectroscopy is technically
The derivation of OD used here, which is based on a feasible and capable of predicting breast tissue densities with
wavelength-dependent transfer function calibration using a good correlation to mammographic densities. Since it has
polyurethane block with high Mie scattering, resulted in the good potential to be developed into a preferred method of
surprisingly flat spectral shape of the principal component assessing cancer risk, the strength of a direct correlation with
spectrap, because the wavelength-dependent Mie scattering risk needs to be proved in a case-control study and possibly
cancels when the ratio of the two spectra is taken. Hepee,  also a longitudinal study to estimate the validity of the corre-
carries optical scattering information despite not showing the |ation and its predictive value for a longer period of time.
typical A~ * dependencd, and thus the inverse df repre- According to the results of the current study, it is antici-
sents the overall scattering power. Low-density tissue spectrapated that the odds ratio of the transillumination measure-
have a reduced amount of scattering compared with high- ments should be close to those of the parenchymal densities
density tissue, and therefore have higher valuets oés seen seen on mammograntse., between 4 and)6since the PCA
in Fig. 10@). This relationship in scattering properties is also results show HDM and LDM values close to or above 0.90.
seen in the scattering coefficient data by Peters & ahd Transillumination spectroscopy may offer a novel “first
Troy et al'® step” in the risk assessment of healthy women regardless of
Component vectop,, makes differentiation between low  age, menstrual cycle, ethnic background, or menopausal status
and high tissue densities possible through its spectral featuresbecause the data and analysis presented here were not subject
related to the lipid, with inverse water peaks present at 930 to stratification by three factors. Indeed the HDM and LDM
and 980 nm, respectively. Thus, whens positive, the lipid- did not improve when stratifications based on menstrual
associated attenuation is the dominant feature, as anticipatectycle, skin color, or menopausal status were introduced.
for fatty or low-density tissue. Spectra from the high-density Spectral features associated with predicting tissue density
tissue have a negativg, and water absorption becomes the include water and lipids, as well as spectral features related to
dominant structure in the component spectrum. Graham hemoglobin absorption. The effect of light scattering on mea-
et al* also observed this relationship between water and den- sured spectra is important in the differentiation of breast tissue
sity values when they used magnetic resonance imagingdensity after correction of the data for tissue thickness.
(MRI) to quantify percent density. In their study, the water At this stage, HDM and LDM values close to or above
content of the tissue was measured directly and showed ad-90% are very promising as a way of distinguishing between
equate correlation to percent tissue denéity: 0.79). low- and high-density tissues because they are higher than
Contributions by hemoglobin to the spectral featurepof  those obtained with other physical examinations, such as
are observed between 625 and 850 nm, where the negativaultrasound® and magnetic resonance imagitigyhich are re-
slope and inflection points of the hemoglobin curve are appar- ported to be between 70 and 80%.
ent. Dense breast tissue has lowgescores than low-density Optical transillumination spectroscopy offers the potential
tissue, indicating higher hemoglobin and water contributions. of a real-time and cost-effective method with the ability of the
Converselyp; shows a lipid absorption peak, but water and current instrument to classify tissue densities for breasts that
hemoglobin absorption are absent. Hence, if it is used as aare up to 7 cm in thickness. Improvements in CCD technol-
third discriminator, the overall content of fatty tissue is repre- ogy, such as deep-depletion wells, can increase the optoelec-
sented. The simultaneous appearance of water and hemoglotronic detection and thus will increase the detection ability. An
bin absorption irp, can be explained physiologically, because added advantage of transillumination spectroscopy over ultra-
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sound and MRI is the fact that results are derived from preset 9.
mathematical models and hence no additional trained person-
nel is required for image interpretation or assessment. This
reduces the overall cost to the health-care system for this risk 10
assessment technique. The compactness of the devices makes
them highly mobile and ideal for serving remote areas or de-
veloping countries. The painless procedure and the inherent
safety of this method will most likely contribute to a higher
compliance rate, thus possibly assisting in influencing overall
survival rates.

One notable limitation in this preliminary study was the
number of study subjects, which may have resulted in subop- 5
timal predicted values for HDM and LDM. Also, by using
cluster analysis in 3-D or higher dimensions, other compo-
nents such ap, can be included to improve classification of
tissue density.

12.

14.

X-ray mammography uses ionizing radiation and is con- 15

sidered unacceptable as a tool to assess breast density for
women less than 40 years of age and for frequent measure-
ment, whereas transillumination spectroscopy is safe for

women of all ages. This allows risk assessment to begin at a ¢

much younger age, when the lifestyle and diet are perhaps
easier to influence. Having one to two decades more to effec-
tively reduce the cancer risk makes these mild risk reduction
interventions a valid option for women while possibly also
leading to reduced incidence.

While optical transillumination spectroscopy may be a 18.

promising tool to monitor the effectiveness of risk reduction

interventions such as chemopreventive, dietary, or lifestyle
changes aimed at reducing breast cancer risk, its ability to
detect physical changes over a period of time in the breast

tissue of a given individual needs to be demonstrated in a 20.

prospective longitudinal study.

21.
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