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Abstract. There is increasing attention to prevention as a means to
reduce cancer incidence. Prevention interventions or therapies in turn
rely on risk assessment programs to identify those women most likely
to benefit from education and lifestyle changes. These programs are
usually based either on interviews to identify ethnic, genetic, and lif-
estyle factors contributing to risk or on physical examination of the
breast. For the latter it has been shown that the parenchymal density
pattern observed in X-ray mammography can be used to assess an
individual’s risk. Extensive areas of dense, glandular tissue that are
relatively radio-opaque are associated with higher breast cancer risk,
with an odds ratio of 4 to 6 compared with women in whom the
breast density is low owing to an abundance of adipose tissue. Near-
infrared optical transillumination spectroscopy has been used previ-
ously to investigate the physiological properties of breast tissue. In this
study, women were recruited who underwent recently X-ray mam-
mography. The tissue density was assessed by a radiologist. The
women then underwent optical transillumination spectroscopy, for
which an instrument was developed that delivered visible and near-
infrared light to the breast. After being transmitted through the breast
craniocaudally in one of four quadrants, the spectrum from 625 to
1050 nm was measured. The spectra were used as input to a Principal
Component Analysis (PCA) that used the corresponding mammo-
graphic density as the reference standard. The study group consisted
of 92 women aged 39 to 72 years. Without further stratification for
age, menopausal status, or measurement position, the PCA numerical
model predicted the radiological assessment of tissue density in the
mid 80% to low 90%. © 2004 Society of Photo-Optical Instrumentation Engineers.
[DOI: 10.1117/1.1758269]
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1 Introduction
Breast cancer is the most commonly occurring cancer in
women. In Canada, the lifetime risk of being diagnosed with
breast cancer is approximately 1 in 10,1 the highest out of all
cancers for women. The probability of dying of breast cance
is 1 in 25, which is second only to lung cancer among all
cancer-related deaths.1 Most other developed countries are re-
porting similar probabilities for diagnosis and death. Breas
cancer screening programs have been shown to decrease
mortality rates of women between ages 50 and 69,2 since
cancers are detected at an earlier, more easily cured stag
Conversely, the overall incidence of breast cancer is still ris
ing, possibly owing to the increasing age of the population.3
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Currently, imaging by X-ray mammography, ultrasoun
and/or magnetic resonance imaging are the prim
modalities4 used for breast imaging. These modalities u
physical or chemical differences in tissue, such as the ra
tion attenuation coefficient, water content, or physical dens
to observe differences in the tissue morphology that may s
gest aberrant growth associated with cancer.

While the understanding of the mechanisms leading
breast cancer is increasing, they are still not fully understo
although it is apparent that the development of breast ca
is a slow process following initial transformation of the brea
tissue.5 There is currently an effort within the research com
munity to understand risk factors for the disease that are
hibited before or during this slow transformation process,
definitely prior to any clinical manifestation of breast canc
This would enable members of the highest risk population
make educated decisions about increased screening and/
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Non-ionizing near-infrared radiation . . .
terventions to reduce risk. Risk factors are defined as thos
characteristics that are more common in people with the dis
ease compared with the population at large.6 Risk factors re-
lated to breast cancer include age, country of residence, firs
degree relatives or personal history of breast disease, gene
factors, anthropometric factors, menstrual and physiologica
factors all commonly combined into the Gail score,7,8 provid-
ing a numerical risk quantifier for the next decade or an indi-
vidual’s lifetime.

Although screening and risk reduction intervention have
been shown to benefit the entire population at risk, for an
individual member of the high-risk population, the risk-
benefit ratio may not be favorable.9 To maximize the benefit
for the individual as well, the relative risk quantifier employed
is very large, so that most of the high-risk group members ar
identified while the quantifier minimizes the inclusion and
hence exposure of low- or medium-risk subjects to potentia
side effects of the risk reduction interventions. Risk reduction
interventions can be as benign as modifications to a subject
lifestyle, exercise, and diet, which has been shown to reduc
the relative area of mammographic densities after 2 years,10 or
they can be invasive, such as chemoprevention, including th
use of tamoxifen,11 aromatases,12 and prophylactic
mastectomy.13

Increased fibroglandular tissue in the breast that has a hig
X-ray attenuation coefficient, thus appearing bright in stan-
dard mammograms, is a known physiological risk factor.14–17

Areas appearing radiologically lucent represent fatty tissue o
the breast that is rarely the source of aberrant growth. Radio
logically opaque tissue is a common source of carcinomas
and consequently, the relative area of dense tissue is a stro
risk factor. See Fig. 1 for examples of high and low X-ray
dense breast tissue. Commonly, breast tissue density is qua
tified following breast cancer screening visits and it has bee
suggested that it can be affected by hormonal and dietar
changes.18

Parenchymal density is used as the standard risk asses
ment tool14 in the study presented here because it provides th
best available standard for risk in a cross-sectional study.

Breast tissue is a highly light-scattering medium and has
relatively low absorption in the red and near infrared wave-
length range, resulting in an adequate penetration depth o
light. This allows a sufficient number of photons to be de-
tected in a few seconds traversing through up to 7 cm o
breast tissue while maintaining the incidence power below
government guidelines for exposure of skin.19

Previous diagnostic studies of breast tissue showed tha
quantification of water, lipids, hemoglobin, and other tissue
chromophores is feasible using near-infrared spectroscopy.20

Fibroglandular tissue is expected to result in increased wate
and simultaneous decreased lipid-associated absorption, ide
tifiable through absorption peaks at 978 and 930 nm
respectively21 ~Fig. 2!. It is also expected to have a higher
scattering efficiency than adipose tissue, as seen in Fig. 3.18

Finally, hemoglobin~Hb! can be identified by an absorption
peak at 760 nm, while oxygenated hemoglobin(HbO2) has
only a low and broad absorption, with a local maximum close
to 920 nm.21

Transillumination spectroscopy has been shown to detec
the presence of breast cancer.22 In this method, light emitted
from the opposite side of the breast passes at least twic
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through the skin. The skin’s varying melanin content~depend-
ing on ethnicity and sun exposure! can affect the transmission
spectrum, and hence may limit the predictive value of tran
lumination spectra because the melanin content does no
fect breast cancer risk. While quantification of skin color
feasible based on diffuse reflectance spectroscopy,23 and can
permit subtraction of melanin-associated absorption, it w
not done in this study, and participants were not stratified
skin color or ethnic background, in order to obtain densit
and risk classifications that were independent of ethnicity.

Optical transillumination spectroscopy is not an imagi
technique and thus only bulk tissue properties are obtaina
and are characterized through spectral shape and inte
analysis. Hence, for comparison with mammograph
determined risk, the X-ray images were classified only as l
medium, or high tissue density, omitting spatial informati
about the density pattern.

This investigation was set up as a cross-sectional stud
evaluate the feasibility of detecting and quantifying breast
sue density as an intermediate to risk predictionin vivo using
visible and near-infrared transillumination spectroscopy. T
hypothesis is that optical transillumination spectroscopy p
vides information consistent with conventional mammog
phy in quantifying breast tissue density and hence, indire
breast cancer risk, with an odds ratio comparable to tha
mammography.

2 Methods
2.1 Instrumentation
The clinical spectrographic system, designed and built
house, is shown as a schematic in Fig. 4. A 12-W halog

Fig. 1 Examples of X-ray-based mammograms showing breasts with
either (a) high or (b) low tissue density. Note: Different X-ray expo-
sures were used for the two examples.
urnal of Biomedical Optics d July/August 2004 d Vol. 9 No. 4 795
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Simick et al.
Fig. 2 Absorption spectra of some major chromophore constituents in
breast tissue, including (a) water (gray) and lipid (black) and (b) he-
moglobin (black) and oxygenated hemoglobin (gray).15
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lamp ~Welch Allyn, Buffalo, New York!, with a stabilized
power supply was used as the broadband light source. Th
ultraviolet, short-visible and midinfrared regions of the spec-
trum were blocked by a cutoff filter~,550 nm! and a heat
rejection filter~KG4, Melles Griot, Carlsbad, Calif.!, respec-
tively. The remaining light in the 550 to 1300-nm range was
coupled by a 20-mm focal length lens into a 5-mm diamete
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liquid light guide~Kaiser Electronics, San Jose, Calif.!, placed
in contact with the top of the breast. The total radiant pow
delivered to the skin surface was,250 mW. The transmitted
light was collected by a custom-made 7-mm diameter opt
fiber bundle~P&P Optical Kitchener, Ontario, Canada! that
was positioned coaxially with the source guide. The lig
guides were mounted in a caliper, the separation of wh
could be adjusted by hand so that both optodes were in c
tact with the breast. Contact of the source guide was fi
with the breast compressed locally by not more than 5 mm
ensure good coupling to the tissue. The holder for the sou
guide and the plate in which the detector guide was embed
were made of black plastic to model matched boundary c
ditions. During spectral measurements, the subject was se
and each breast in turn rested comfortably on a support p
the height of which could be manually adjusted. No pretre
ment of the skin surface was required.

The collected light was spectrally dispersed using a hi
throughput holographic grating~15.7 lines/mm:, Kaiser,
Carlsbad, California! with a 0.5-mm entrance slit and detecte
with a 2-D, liquid nitrogen-cooled back thin silicon CCD a
ray ~F-125, Photometrics, New Jersey!. The spectral resolu-
tion was,3 nm ~FWHM! over the 625- to 1060-nm band
width. The peak quantum efficiency of the detector was.0.8
at 780 nm, falling to 0.2 at 1100 nm. The entrance slit of t
spectrometer was imaged onto 50 rows of the CCD, thus
creasing the dynamic range by over 25 fold. The dark co
was ;0.06 electrons per hour. Further noise reduction w
achieved using exposure times of 2 to 3 s and averaging up to
5 scans. The system’s dynamic range was.5 OD ~optical
densities! with a signal-to-noise ratio of.10 to104 across the
spectral range.

This study was approved under the institutional revie
boards of the University of Toronto and the University Hea
Network, with informed consent. Women were recruit
through the Marvelle Koffler Breast Center at Mount Sin
Hospital, Toronto. All had prior mammograms within 1
months of the spectral measurement, classified by a radi
gist ~RJ! as either low~,25%!, medium~25 to 75%!, or high
~.75%! tissue density.14 Women showing large variations be
tween both sides of the bilateral organ were not included
this analysis.

Fig. 4 Setup schematic of transmission measurement system, consist-
ing of a continuous wave white light source, optodes (liquid light
guide and fiber bundle in the caliper mount), breast support, spectro-
photometer, and central processing unit.
Fig. 3 Graph of the scattering coefficient (ms8) of adipose (black) and
fibrous (gray) breast tissue in the wavelength range of interest.
(Adapted according to Troy et al.11).



Non-ionizing near-infrared radiation . . .
Table 1 Tissue density distribution for recruited volunteers and for population proportions from the
National Breast Screening Study (ages 40 to 59).21

Density
Category

Premenopausal Postmenopausal

Total

Study
Proportion

(%)

Population
Proportion

(%)
Training

Set
Validation

Set Total
Training

Set
Validation

Set Total

Low 4 1 5 25 8 33 38 41 37

Medium 13 5 18 13 5 18 36 39 49

High 8 3 11 5 2 7 18 20 14
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2.2 Measurement Procedure and Spectral
Preprocessing
The total data acquisition time was approximately 15 minutes
and was completed in complete darkness. A total of 8 spectr
were collected per subject, representing medial, distal, latera
and central quadrants of each breast. To date, a total of 9
women have been entered in the study, of whom 58 are pos
menopausal. The wavelength dependence of the sensitivi
was corrected daily by normalizing the transillumination
spectra made through a standard consisting of 1-cm thicknes
ultra-high density polyurethane~Gigahertz Optics, Munich,
Germany!, which has a very flat attenuation spectrum. All
tissue spectra are given as optical density relative to this stan
dard. Further preprocessing of spectra included correction fo
the tissue thickness by calculating the OD/cm at each wave
length. Autoscaling of the spectra, was done by normalizing
the spectrum to the average spectrum off all spectra containe
in the training set data for PCA model development~see later
discussion!, whereas spectra in the validation set were scaled
using the same mean spectra. Principle component analys
requires random splitting of the dataset into a training set to
iteratively optimize the algorithm and a training set to verify
that the optimization can be generalized to all available spec
tra.

2.3 Data Analysis
The radiological classification produces a scalar quantity
namely the mammographic density, and the optical spectrum
is a vector. Hence, only multivariate analysis techniques tha
are able to correlate vectors with scalars and that have bee
used extensively for different applications requiring the analy-
sis of complex spectra, such as in chemometrixs24 and spec-
troscopic analysis in medical applications,25,26 were
considered.27,28Typically, these methods involve first a ‘‘train-
ing’’ step to identify the variance within a set of spectra and
subsequently, a ‘‘prediction’’ or ‘‘validation’’ step to deter-
mine the accuracy of a separate set of spectra in predicting th
outcome, which in this case is the tissue density classification
The specific analytical technique used here is Principal Com
ponents Analysis~PCA!.

Mathematically, the PCA procedure is as follows. First, the
spectral data are reduced in extent, while preserving the max
mum amount of variance.29 This is accomplished by solving
for the covariance or correlation matrix of the data matrix
X(m3n) comprising all measured spectra(n5544; training
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set only! and the spectral range(m5436 wavelengths!, such
that:

cov~X!5
XTX

n21
~1!

PCA decomposes the data matrixX as the sum of the oute
products of the scalars oft i and vectorspi and a residual
matrix E:

X5t1p1
T1t2p2

T1t3p3
T1...1t ipi

T1E

or

X5TPT1E, ~2!

where the elements of thet i (n31) vectors are the scores tha
contain information on how the spectra relate to each ot
and thepi vectors(m31) or components are the eigenvecto
of the covariance matrix that relate the selected variance
each other.

The scores~elements oft i) can be graphically plotted
against one another to show clustering of related spectra.
PCA algorithm was trained on a test set(n5544) and the
same mathematical model, i.e., retaining thepi , was used to
determine the scorest i on the validation set that consisted o
the remainingnv5192 spectra.

The statistical significance for the PCA prediction was e
tablished using the high-density measure~HDM!, which is
defined as the ratio of spectra predicting a woman as hav
high mammographic density by the PCA algorithm compa
with those categorized as having high tissue density by
radiologist. Conversely, the low-density measure~LDM ! rep-
resents the ability to correctly identify those spectra that r
resent low tissue density. Hence, the HDM and LDM a
similar to sensitivity and specificity, respectively.

3 Results
The dataset includes mammograms and spectral results
92 subjects~aged 36 to 72 years!. Fifty-eight women were
postmenopausal, of whom 33 were classified as having
18 medium, and 7 high mammographic density. Of the
premenopausal women, 5, 18, and 11 were classified as
ing low, medium, and high density, respectively, as shown
Table 1. At present, this classification does not reflect
urnal of Biomedical Optics d July/August 2004 d Vol. 9 No. 4 797
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Fig. 5 Typical attenuation spectra from the four quadrants of both
breasts in a volunteer. The spectra are corrected for the spectral sys-
tem transfer function and tissue thickness. Note the good reproduc-
ibility between corresponding sides of the bilateral organ. Distal spec-
tra show the lowest and the center position the highest attenuation.
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distribution observed in the general population during the Ca
nadian National Breast Screening Study,15 but recruitment is
continuing.

Figure 5 shows a typical set of measurements, consistin
of 8 spectra from a single subject. Spectra from correspondin
quadrants on each breast are very similar, a fact used by Ega
and Dolan22 as a negative predictor for the absence of breas
cancer.

While transillumination is a local measurement, neverthe-
less a large volume of tissue is interrogated at each positio
~estimated as 25 cm3 for a 5-cm breast thickness!. For posi-
tions close to the circumference of the breast boundary, losse
will affect the overall intensity of the transmitted spectra and
could influence the spectral shape; thus they could limit the
predictive value of the transillumination technique. Hence, re
peat measurements were made in one subject, starting at t
center position and moving toward the medial position and
beyond toward the circumference of the breast. The resultin
transillumination spectra are shown in Fig. 6, indicating that
the overall aborbance is wavelength independent up to a dis
tance of 1 cm from the circumference of the breast, where th
losses increase and become wavelength dependent. Thu
measurements where taken at least 1 cm from the circumfe
ence of the breast.

The reproducibility of the optical transillumination mea-
surements was analyzed by repeat procedures on one subj
during visits over a period of 18 months. Figure 7 shows the
correlation of thet1 and t2 scores from two of the repeat
spectra. Component scores(t1 and t2) vary between quad-
rants, but cluster tightly for a given position, indicating that
the spectroscopy data are reproducible. Figure 8 shows th
reconstruction of a randomly selected transillumination spec
trum, according to the variance captured only byp1 andp2 ,
as well as that captured by the first four components in
thickness-corrected spectra. The reconstruction from all fou
components shows a good representation.

Figure 9~a! shows the principal components(pi) resulting
from PCA usingn5544corrected spectra.p1 to p4 represent,
respectively, 97.6, 1.2, 0.6, and 0.3% of the variance in the
total dataset, for a combined 99.8% of the variance. While al
density classes were employed for PCA training, the resulting
798 Journal of Biomedical Optics d July/August 2004 d Vol. 9 No. 4
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cluster plot of the scores fort1 and t2 as shown in Fig. 10~a!
present data for the low and high tissue density classes o
which is similar to mammography-derived tissue densiti
The odds ratio for risk is calculated based on the difference
these two extreme classes. Here the cluster plot shows
crimination of the breast tissue density across a diagonal
in the t1 versust2 space. Based on a physiological interpre
tion of the information carried by the principal componen
p1 andp2 quadrants indicating scattering power and relat
water to lipid ratios are indicated.

Spectra that had not been corrected for thickness were
to determine the effect of thickness on the shape of the c
ponent vectorsp1 to p4 @Fig. 9~b!# and the resulting cluste
plots of t1 versust2 @see Fig. 10~b!#. The component spectr
are almost identical to the thickness-corrected compone
whereas the cluster plots oft1 versust2 show discrimination
as a function oft2 only. The reproducibility of the principle
components between thickness-corrected and uncorre
spectra indicates the general validity of the approach to us
thickness-corrected spectra in this PCA analysis.

Plotting of t3 versust4 or other combinations of the score
resulted in poor separation of the low- and high-density cl
ters~data not shown! and were not further pursued. Similarl

Fig. 6 Effect of boundary losses at the breast circumference. (a) At-
tenuation spectra from a volunteer at various distances from the breast
circumference (center position black, medial position dark gray), 2 cm
from circumference (gray), and 1 cm from circumference (light gray).
(b) Ratio of the same spectra over the average of all four spectra to
exaggerate spectral variance that is due to boundary losses.
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Fig. 7 Repeatability of t1 and t2 in one volunteer at all 8 positions. The slope of the regression line is 1.03 and 0.87, and the Pearson correlation
coefficient is 0.72 and 0.84 for t1 and t2 , respectively.
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component spectra and cluster plots were obtained also fo
autoscaled and transfer function-corrected spectra~data not
shown!. The resulting HDM and LDM values for the different
spectral preprocessing methods are shown in Table 2. Th
symmetry across the same bilateral quadrants for each ind
vidual is shown in Fig. 11 for all scores oft1 and t2 derived
from thickness-corrected spectra, reflecting a pool of women
with homogeneous density distribution across both breasts.

4 Discussion
Bilateral symmetry in the spectra at corresponding quadrant
~Fig. 11! is expected in our study population since it is a
criterion for determining the absence of breast cancer accord
ing to previous studies by Egan and Dolan.22

Autoscaling of the spectra prior to PCA modeling removes
some spectral information since the subtracted mean spectru
is wavelength dependent. Since the spectral features contri
uting to the discrimination between high and low breast den
sity or risk are not known, losing spectral information is not
advisable, even though no significant loss in HDM and LDM
was noted. In addition, calculating component spectra afte
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autoscaling will not allow the use of principal componen
filters in future work, as suggested elsewhere.30

Cluster plots@Fig. 10~a!# based on the scorest1 and t2
resulting from thickness-corrected spectra demonstrated th
is possible to differentiate between subjects having low
high breast tissue densities, which is the basis of determin
the odds ratio for cancer risk based on mammograp
density.15 Adding the medium density class into the HDM an
LDM will not change the former, but will lower the latter b
0.2 to 0.3, depending on the actual model used.

Fig. 9 Plot of components p1 to p4 (black to light gray, respectively)
from PCA using (a) tissue thickness and spectral transfer function-
corrected spectra and (b) only spectral transfer function-corrected
spectra (derived from 92 volunteers).
Fig. 8 Raw data spectrum (black) and reconstruction using either only
the first two components (light gray) or the first four components (gray)
based on the principal components shown in Fig. 9(a).
urnal of Biomedical Optics d July/August 2004 d Vol. 9 No. 4 799
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Fig. 10 Cluster plot of t1 versus t2 resulting from PCA using (a) thick-
ness and system spectral transfer function-corrected spectra and (b)
only spectral transfer function-corrected spectra from volunteers with
high (square) or low (diamond) breast tissue density. Only scores for
the center measurements are shown, with the training spectra shown
as closed and the validation spectra as open symbols. (a) also includes
a physiological interpretation of the data points within the t1 versus t2
space.
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While PCA models for both native and thickness-corrected
spectra enable differentiation between high and low breas
tissue densities, theirt1 versust2 cluster plots differ. In the
model based on native nonthickness-corrected data,p1 cannot

Table 2 High-density and low-density measures (HDM and LDM) of
principal component analysis results for test and validation set mea-
surements.

Data preprocessing

Test Set Validation Set

HDM LDM HDM LDM

Transfer function-corrected
(Fig. 9b)

84.6% 97.0% 87.5% 90.3%

Thickness and transfer function-
corrected
(Fig. 9a)

88.4% 93.1% 92.5% 88.8%

Autoscaled—transfer function-
corrected (data not shown)

85.6% 94.4% 90.0% 86.1%

Autoscaled—thickness and
transfer function-corrected (data
not shown)

86.5% 91.8% 92.5% 90.3%
800 Journal of Biomedical Optics d July/August 2004 d Vol. 9 No. 4
t

differentiate between high- and low-density tissue. The ra
of t1 values is smaller in the thickness-corrected data, as s
in Fig. 10~a!, compared with the nonthickness-corrected d
in Fig. 10~b!. This is possibly due to the variance added by t
thickness of the physical tissue to the variance in the spec
dataset introduced. This indicates that the thickness va
contribute to the magnitude ofp1 , masking other contribu-
tions that could differentiate between tissue densities, suc
light scattering, and thus leaving onlyt2 to preserve informa-
tion distinguishing between the two groups of breast tiss
density. Principal component spectra one(p1) based on the
thickness-corrected spectra is de facto wavelength inde
dent, but includes losses that are due to the optical path le
~and therefore light scattering! and losses at the circumferenc
of the breast. Thet1 range of the low tissue density cluste
relative to that of the high-density cluster between the P
models based on either the raw spectra or the thickn
corrected data most likely reflects the fact thatp2 carries only
approximately 1% of the total variance seen in the data
Preprocessing of the spectra, including thickness correctio
clinically relevant since it is controllable and it has be
shown that thickness will contribute nonuniformly to th

Fig. 11 Comparison of the (a) t1 and (b) t2 scores for all quadrants of
the left versus those of the right breasts in volunteers with either high
or low tissue density. Black diamonds represent volunteers from the
training set; gray squares represent those from the validation set. Slope
and Pearson correlation coefficient are 0.94 and 0.76 for t1 and 1 and
0.83 for t2 , respectively.



m

i
e

i

u

i

s

t
g

a
-

g

d

-

.

a

lo

ent,
sed

e

-
utes

ns

pe
or
this
ctra

ay

lly
with
has

of
with
ibly

re-

i-
re-
ities

0.
st
s of
tatus
ubject
M
ual

sity
d to
ea-
sue

e
en
han
as

ial
he
that
ol-

elec-
An
ltra-

Non-ionizing near-infrared radiation . . .
spectra, owing to the correlation between lower density and
larger breasts.14

When the autoscaled and nonautoscaled data were com
pared, there were minimal changes in the principal componen
spectra and minor differences in HDM and LDM values; see
Table 2. Autoscaling as part of the preprocessing can degrad
regions with flat or extreme spectral variation.28 Here, de-
graded spectral features could include regions of the spectru
with minimal wavelength dependence and hence, a first de
rivative close to zero. For example, the hemoglobin inflection
points are more pronounced in the non-autoscaled data than
the autoscaled components. Conversely, the spectral featur
of water and lipids are large compared with other structures in
the spectra, but are less pronounced after auto scaling. In th
study, the only difference in the performance of the model is
in the training set using non-autoscaled spectra having abo
2% higher scores for both HDM and LDM.

Principal components can reveal particular regions of the
spectrum that represent important physical properties or ent
ties within the tissue that contribute to differentiation. Com-
ponent spectrap1 andp2 are the most important and cover the
highest amount of variance in the dataset. While component
3 and 4 have shapes similar or inverse to that of component 2
they take less variance into account.

The derivation of OD used here, which is based on a
wavelength-dependent transfer function calibration using a
polyurethane block with high Mie scattering, resulted in the
surprisingly flat spectral shape of the principal componen
spectrap1 because the wavelength-dependent Mie scatterin
cancels when the ratio of the two spectra is taken. Hence,p1
carries optical scattering information despite not showing the
typical l21 dependence,31 and thus the inverse oft1 repre-
sents the overall scattering power. Low-density tissue spectr
have a reduced amount of scattering compared with high
density tissue, and therefore have higher values oft1 , as seen
in Fig. 10~a!. This relationship in scattering properties is also
seen in the scattering coefficient data by Peters et al.32 and
Troy et al.18

Component vectorp2 , makes differentiation between low
and high tissue densities possible through its spectral feature
related to the lipid, with inverse water peaks present at 930
and 980 nm, respectively. Thus, whent2 is positive, the lipid-
associated attenuation is the dominant feature, as anticipate
for fatty or low-density tissue. Spectra from the high-density
tissue have a negativet2 , and water absorption becomes the
dominant structure in the component spectrum. Graham
et al.33 also observed this relationship between water and den
sity values when they used magnetic resonance imagin
~MRI! to quantify percent density. In their study, the water
content of the tissue was measured directly and showed a
equate correlation to percent tissue density(r 50.79).

Contributions by hemoglobin to the spectral features ofp2
are observed between 625 and 850 nm, where the negativ
slope and inflection points of the hemoglobin curve are appar
ent. Dense breast tissue has lowert2 scores than low-density
tissue, indicating higher hemoglobin and water contributions
Conversely,p3 shows a lipid absorption peak, but water and
hemoglobin absorption are absent. Hence, if it is used as
third discriminator, the overall content of fatty tissue is repre-
sented. The simultaneous appearance of water and hemog
bin absorption inp2 can be explained physiologically, because
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tissues with higher water content and hence cellular cont
require improved vascular supply and thus have an increa
blood volume.34 Since positivet2 scores are related to low
tissue density and positivet1 scores are related to low tissu
scatter, the cluster plot oft1 and t2 can be divided into quad-
rants as shown in Fig. 10~a!, highlighting the relationship be
tween the spectral features and the known physical attrib
of breast tissue.

While cluster plots based ont3 and t4 do not allow good
differentiation between high- and low-density tissue, regio
of the corresponding component spectrap3 and p4 show in-
teresting effects. For example, forp3 there is a red-shifted
lipid peak and a small blue-shifted water peak, andp4 shows
influence from both forms of hemoglobin, with the same slo
asp2 but inverse inflection points. The underlying physical
physiological effects for these observations are unclear at
time. While the amplitudes and general shape of the spe
are similar top2 , the magnitude of the scores fort3 andt4 are
much smaller than those of the first two components, and m
represent only relative corrections forp2 .

5 Conclusions
In vivo optical transillumination spectroscopy is technica
feasible and capable of predicting breast tissue densities
good correlation to mammographic densities. Since it
good potential to be developed into a preferred method
assessing cancer risk, the strength of a direct correlation
risk needs to be proved in a case-control study and poss
also a longitudinal study to estimate the validity of the cor
lation and its predictive value for a longer period of time.

According to the results of the current study, it is antic
pated that the odds ratio of the transillumination measu
ments should be close to those of the parenchymal dens
seen on mammograms~i.e., between 4 and 6!, since the PCA
results show HDM and LDM values close to or above 0.9

Transillumination spectroscopy may offer a novel ‘‘fir
step’’ in the risk assessment of healthy women regardles
age, menstrual cycle, ethnic background, or menopausal s
because the data and analysis presented here were not s
to stratification by three factors. Indeed the HDM and LD
did not improve when stratifications based on menstr
cycle, skin color, or menopausal status were introduced.

Spectral features associated with predicting tissue den
include water and lipids, as well as spectral features relate
hemoglobin absorption. The effect of light scattering on m
sured spectra is important in the differentiation of breast tis
density after correction of the data for tissue thickness.

At this stage, HDM and LDM values close to or abov
90% are very promising as a way of distinguishing betwe
low- and high-density tissues because they are higher t
those obtained with other physical examinations, such
ultrasound35 and magnetic resonance imaging,33 which are re-
ported to be between 70 and 80%.

Optical transillumination spectroscopy offers the potent
of a real-time and cost-effective method with the ability of t
current instrument to classify tissue densities for breasts
are up to 7 cm in thickness. Improvements in CCD techn
ogy, such as deep-depletion wells, can increase the opto
tronic detection and thus will increase the detection ability.
added advantage of transillumination spectroscopy over u
urnal of Biomedical Optics d July/August 2004 d Vol. 9 No. 4 801
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Simick et al.
sound and MRI is the fact that results are derived from prese
mathematical models and hence no additional trained perso
nel is required for image interpretation or assessment. Thi
reduces the overall cost to the health-care system for this ris
assessment technique. The compactness of the devices ma
them highly mobile and ideal for serving remote areas or de
veloping countries. The painless procedure and the inheren
safety of this method will most likely contribute to a higher
compliance rate, thus possibly assisting in influencing overal
survival rates.

One notable limitation in this preliminary study was the
number of study subjects, which may have resulted in subop
timal predicted values for HDM and LDM. Also, by using
cluster analysis in 3-D or higher dimensions, other compo
nents such asp4 can be included to improve classification of
tissue density.

X-ray mammography uses ionizing radiation and is con-
sidered unacceptable as a tool to assess breast density
women less than 40 years of age and for frequent measur
ment, whereas transillumination spectroscopy is safe fo
women of all ages. This allows risk assessment to begin at
much younger age, when the lifestyle and diet are perhap
easier to influence. Having one to two decades more to effec
tively reduce the cancer risk makes these mild risk reduction
interventions a valid option for women while possibly also
leading to reduced incidence.

While optical transillumination spectroscopy may be a
promising tool to monitor the effectiveness of risk reduction
interventions such as chemopreventive, dietary, or lifestyle
changes aimed at reducing breast cancer risk, its ability t
detect physical changes over a period of time in the breas
tissue of a given individual needs to be demonstrated in
prospective longitudinal study.
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