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ABSTRACT

The general problems of describing local thermal coagulation dynamics leading to the growth of necrosis that
is limited by heat diffusion to surrounding live tissue is considered. It is demonstrated that in this case the
typically used distributed model for thermal coagulation is based on a self-inconsistent approach, and a more
rigorously justified free boundary model is derived. This free boundary model takes into account only the
general properties of thermal coagulation and so provides a self-consistent description. It is shown that the
two models, nevertheless, predict practically the same dynamics of necrosis growth because this growth is
insensitive to the particular properties of heat transfer in the thin layer of partially damaged tissue. Necrosis
growth is also simulated numerically under various physical conditions to verify the assumptions adopted.
© 1998 Society of Photo-Optical Instrumentation Engineers. [S1083-3668(98)00501-2]
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1 BACKGROUND

This paper provides a mathematical description of
necrosis formation caused by local thermal coagu-
lation of living tissue. In dealing with this problem
we kept in mind the following physical model. Ab-
sorption of laser light delivered to a small internal
region of living tissue causes the temperature to
reach high values (about 70°C) that lead to imme-
diate coagulation in this region. Heat diffusion into
the surrounding live tissue causes its further ther-
mal coagulation, giving rise to the growth of the
necrosis domain. In this case heat diffusion plays a
significant role in necrosis growth because the ne-
crosis size R exceeds the depth of laser light pen-
etration into the tissue. Therefore the temperature
distribution inevitably has to be substantially non-
uniform, and for the tissue to coagulate at the pe-
ripheral points, the heat diffusion should cause the
temperature to increase at these points. The latter
property distinguishes the particular case of ther-
mal coagulation discussed here from other possible
types of thermotherapy treatment. That is why we
refer to necrosis growth under these conditions as
thermal coagulation limited by heat diffusion. We
can estimate the typical duration t total of such a
treatment as t total;R2/D , where D is the tempera-
ture diffusivity of the tissue, and setting R55 to 10
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mm, D5231023 cm2/s gives t total;2 to 8 min. In a
thermotherapy treatment based on shorter time re-
gimes, heat diffusion seems not to play a significant
role.

The effect of heat diffusion on local thermal co-
agulation has been considered and numerically
simulated by a number of authors (see, e.g., Refs. 1
through 3 and the references therein). Leaving
aside the description of laser light propagation in
the tissue, we can generalize their models for necro-
sis formation to the following coupled equations for
the temperature field T(r,t) and the field z(r,t) de-
termining the fraction of undamaged tissue at a
given point r and time t :

cr
]T
]t

5¹~keff¹T !2fcbrbj~T2Ta!1q , (1)

]z

]t
52zv~T !. (2)

Here keff is the effective thermal conductivity of the
tissue; c , r, cb , and rb are the density and heat ca-
pacity of the tissue and blood, respectively; Ta is
the temperature of blood in systemic arteries; j is
the blood perfusion rate (the volume of blood flow-
ing through a tissue region of unit volume per unit
time), f is the factor accounting for the countercur-
rent effect;4,5 q is the heat generation rate caused,
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for example, by absorption of the laser light, and
v(T) is the rate of tissue damage due to thermal
coagulation.

The quantities keff and f are the phenomenologi-
cal parameters of the bioheat equation (1), with the
factor f meeting the inequality 0,f,1 and the ef-
fective thermal conductivity keff being of the same
order as the true thermal conductivity of the cellu-
lar tissue k (keff*k).5 The rate v(T) of tissue ther-
mal damage depends strongly on T and for typical
values of temperature attained during the treat-
ment course can be approximated by the expression

v~T !5v0 expH T2T0

D J . (3)

Here v05v(T0), where T0 is a certain fixed tem-
perature and D is a constant. It should be noted that
expression (3) can be justified based on the avail-
able experimental data6 for the temperature depen-
dence of the exposure time or as an approximation
of the Arrhenius dependence v(T)}exp$2(E/T)%.
In particular, these experimental data enable us to
estimate the value of D as D;3 to 5°C (D.3.26°C
for pig liver at T0565°C). In what follows, the sys-
tem of equations (1), (2), and expression (3) will be
referred to as the ‘‘distributed model’’ for local
thermal coagulation.

Let us consider the properties of local thermal co-
agulation that make the mathematical description
of this process a nontrivial problem. During a typi-
cal course of thermotherapy treatment, high tem-
peratures on the order of Tmax;100°C are attained
at the necrosis center, whereas at distant points, T
5Ta'37°C. Under such conditions, the damage
rate v(T) or, what is the same, the reciprocal value
tcg(T)51/v(T), called the threshold exposure time
of thermal coagulation, varies greatly in space (on
scales of a necrosis size R). Indeed, at points where
the temperature attains, for example, values of 60,
65, 70, and 75°C, the values of tcg are 8 min, and
100, 20, and 5 s, respectively.6 The typical duration
t total of the thermotherapy course is several min-
utes, which corresponds in order to the duration of
the fast stage of necrosis growth7,8 and t total*t .
Here

t5

def 1

f ̄
;3 to 6 min, (4)

is the characteristic time scale of the dynamics of
necrosis growth and ̄ is the mean value of the
blood perfusion rate attained near the necrosis
boundary.

In estimate (4) we used typical values of the
blood perfusion rate ̄;0.3, 0.5, and 0.7 min−1 for
stomach, intestine, and spleen, respectively.9 In ad-
dition, we have set f50.5, taking into account the
experimental data10 for the physical parameters of
JOU
the bioheat equation (1) and the results of theoreti-
cal investigations.12 So the layer in which thermal
coagulation is under way at a given moment is
characterized by a narrow temperature interval D in
the vicinity of the coagulation temperature of
Tcg;65°C. This layer of partially damaged tissue
separates the necrosis region (z!1) and live tissue
(z.1). Let us estimate the thickness dpd of this
layer. As follows from the numerical analysis,7,8 the
temperature distribution is characterized by a
single spatial scale, so in the necrosis domain the
mean temperature gradient is about ¹T;(Tmax
2Ta)/R. In addition, a necrosis size reaching typi-
cal values of 10 to 20 mm can be estimated as7,8

R

*l , where

l 5

defA k

crf ̄
;10 mm (5)

is the mean depth of heat penetration into the per-
fused tissue (here we also set k;7
31023 W/cm·K, c;3.5 J/g·K, and r;1 g/cm3).
Then setting dpd¹T;D we get the desired estimate
for the thickness of the layer of partially damaged
tissue

dpd;
D

~Tmax2Ta!
l;1 to 2 mm. (6)

Therefore, to describe necrosis growth due to lo-
cal thermal coagulation in the framework of the dis-
tributed model, one has to consider in detail the
temperature field inside the layer of partially dam-
aged tissue, which, on one hand, is thin enough
and, on the other hand, directly governs necrosis
growth. However, the distributed model describes
the dynamics of local thermal coagulation in the
context of the mean field theory. In other words, as
soon as we deal with Eqs. (1) and (2), we make the
underlying assumption that we convert from the
microscopic equations governing heat exchange be-
tween cellular tissue and blood flowing through in-
dividual vessels to the mesoscopic description of
this exchange in a certain effective continuous me-
dium. This conversion is based on averaging the
true temperature distribution in the tissue and the
corresponding microscopic equations over spatial
scales on the order of l av;l /ALn,11,12 where Ln
5ln(l/a), and l/a is the mean ratio of the indi-
vidual lengths to the radii of blood vessels forming
the peripheral system of blood circulation.12 A typi-
cal value of the ratio l/a;40 (Ref. 13) so Ln;4.
From this it follows that the temperature field
T(r,t) that appears in the equations of the distrib-
uted model may not have remarkable variations on
spatial scales much less than the averaging scale
l av . Thus, on these scales temperature nonunifor-
mities cannot be rigorously described by the bio-
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heat equation (1) and its validity is not obvious in
cases where such temperature nonuniformities play
a substantial role.

In addition, in the mean field approximation, we
ignore the difference between the true temperature
distribution in the tissue and the temperature field
T(r,t), i.e., we do not take into account the random
component of temperature distribution caused by
the discreteness of blood vessels. This is justified if
the mean amplitude ^dT& of such random nonuni-
formities of the tissue temperature is small. At the
point where the averaged tissue temperature is
equal to T , the value of ^dT& can be estimated12 as

^dT&&
1

Ln
~T2Ta!, (7)

and taking into account other numerical constants,
we get ^dT&;(10 to 20%) (T2Ta) (see also Ref.
14).

Returning to the initial problem, we find from ex-
pression (6) that for the given values of parameters

dpd

lav
;0.2 and

^dT&uT5Tcg

D
;1. (8)

Therefore the distributed model for local thermal
coagulation has to deal with spatial scales on which
its basic equations are not rigorously justified.

Another problem following from the latter one is
the specification of the main quantities characteriz-
ing the partially damaged tissue as a continuous
medium that effectively approximates real cellular
tissue with a vascular network embedded in it.
Namely, we should specify the effective thermal
conductivity keff and the factor f as functions of the
blood perfusion rate j and the fraction z of undam-
aged tissue:

keff5keff~z ,j !, f5f~z ,j !. (9)

However, these dependencies can be obtained only
in the framework of the mean field theory dis-
cussed above and can adequately describe heat
transfer only on scales about or greater than l av . So
we may write the corresponding relations only for
live tissue where z!1. (Clearly, in the necrosis do-
main keff5k, and we may set f equal to any value
on the order of unity because j50 in this region.) In
particular, it turns out12 that at the first approxima-
tion keff5Fk, where the factor F*1 as well as f&1
are certain constants specified by the vascular net-
work architectonics.* Inside the layer of partially
damaged tissue any dependence of the type keff

* It should be noted that, in general, the values F and f are func-
tions of the blood perfusion rate j , which has been experimen-
tally demonstrated in Ref. 10 by analyzing heat transfer in arti-
ficially perfused bovine tongues. However, due to the fractal
structure of the vascular network, the functions F(j) and f(j)
can be regarded as certain constants under typical conditions in
living tissue.12
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5keff(z) or f5f(z) is nothing more than a formal
phenomenological approximation of the actual
complicated phenomenon. In particular, as follows
from the results to be obtained in the next section,
the details of the dependence f5f(z) are of no con-
cern and below we will treat the value f as a con-
stant.

In order to complete the description of the dis-
tributed model, we should describe how the blood
perfusion rate depends on the fraction z of the un-
damaged tissue and the temperature distribution
(the latter dependence is due to the tissue response
to temperature variation). It has been proposed2 to
set

j~z ,T !5zj t~T !, (10)

where j t(T) is the perfusion rate that would occur
in tissue without damage. Clearly, this is also a
purely phenomenological approximation.

The only fact that could justify applying the dis-
tributed model to an analysis of local thermal co-
agulation is the independence of necrosis growth
from particular details of heat transfer in the layer
of partially damaged tissue. In this case, however, it
would be more consistent to use a free boundary
model that ignores the thickness of this layer, i.e.,
treats it as the boundary of the necrosis domain.
The motion of such an interface must be governed
by the boundary values of the temperature and its
gradient. Particular details of heat transfer in the
given layer may be taken into consideration by a
certain collection of parameters.

This paper attempts to show that this indepen-
dence is really the case and to derive the corre-
sponding free boundary model. In particular, for-
mally assuming equation (1) to hold in the entire
region under consideration, we reduce the system
of Eqs. (1) and (2) to an equivalent free boundary
model that deals with integrated characteristics of
the tissue damage rate inside the layer of partially
damaged tissue. In other words, the model aggre-
gates the particular details of the functions keff(z)
and j(z ,T) to certain constants on the order of
unity, which demonstrates the desired indepen-
dence. It should be noted that in Ref. 15 we only
presented initial results in developing this model.

2 EFFECTIVE INTERFACE DESCRIPTION OF
NECROSIS GROWTH

In this section we derive the desired free boundary
description of local coagulation assuming that Eqs.
(1) and (2) hold at all the spatial points. The central
point of the derivation procedure is to reduce the
distributed model to equations dealing with the
layer of partially damaged tissue in terms of an in-
terface whose velocity is determined by local char-
acteristics of the temperature field that do not vary
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Fig. 1 The layer of partially damaged tissue and the local coordi-
nate system.
over this layer and so remain unchanged at the
nearest points of the living tissue and the necrosis
region.

For the purpose of this section, it is sufficient to
consider a specific neighborhood of a layer of par-
tially damaged tissue. Let us choose the local coor-
dinate system $r:x ,y ,z% as shown in Figure 1 and
confine ourselves to the region Q crossed by the
layer Qpd of partially damaged tissue. The size of
the region Q is assumed to be, on one hand, much
smaller than the characteristic size R of the necrosis
domain and, on the other hand, much larger than
the thickness dpd of the layer Qpd . (In other words,
we analyze the case when the tissue in the region
directly affected by laser light has already coagu-
lated.) So inside the region Q we may regard the
layer Qpd as a plane and treat the tissue tempera-
ture T(z ,t) as well as the fraction z(z ,t) of undam-
aged tissue as functions of the coordinate z and the
time t only, provided the z axis is locally normal to
the layer Qpd .

In order to describe the dynamics of local thermal
coagulation, we introduce the interface G specified
by the condition

z~r,t !urPG5z0 , (11)

where z0;0.5 is a fixed value, and keep track of
how it moves. Inside the region Q , the interface G
may be regarded as a plane z5z0 , where the coor-
dinate z0 meets the equality z@z0(t),t#5z0 and the
displacement of the point z0(t) as time goes on rep-
resents the motion of the interface G at the velocity
qn5dz0(t)/dt .

In the given coordinate system, Eqs. (1) and (2)
completed by expression (3) can be rewritten as

cr
]T
]t

5k
]

]z F F̂~z!
]T
]z G2fcrj~T2Ta!1q , (12)
JOU
]z

]t
52z

1
t

expH T2T0

D J . (13)

Here the function F̂(z);1 is specified by the ex-
pression

F̂~z!5
keff~z!

k
, (14)

where we have explicitly taken into account only
the variable z because the other possible variables T
and j t in this expression can be regarded as con-
stants inside the region Q . In addition, we have
ignored the difference between cr and cbrb (or,
what is the same, aggregated it into the value of f )
and have chosen the temperature T0 so that v0
51/t . This is feasible because for typical conditions
of thermotherapy treatment (see Sec. 1) the mean
temperature T̂pd in the layer of partially damaged
tissue meets the conditions

T̂pd2Ta@D and Tmax2T̂pd@D (15)

so v(Ta)!1/t and v(Tmax)@1/t .
Let us now discuss the general features of the dy-

namics of the fields T(z ,t) and z(t ,r). As men-
tioned in the previous section, necrosis growth as a
whole is characterized by the temporal and spatial
scales t and l determined by expressions (4) and (5).
In addition, temperature distribution in the vicinity
of the necrosis domain is characterized by a single
spatial scale.7,8 Moreover, the form of the tempera-
ture distribution does not depend on the particular
values of the tissue heat parameters but on their
typical variations. Therefore we may set

]T
]t

;
Tmax2Ta

t
,

]T
]z

;
Tmax2Ta

l
, and qn;

l
t

(16)

as well as at the points belonging to the layer of
partially damaged tissue

]z

]t
;

1
t

. (17)

In addition, the mean value q̂ of the heat generation
rate at central points r&R of the necrosis domain
should meet the inequality

q̂t

cr~Tmax2Ta!
&1 (18)

and at distant points r*R

q̂t

cr~Tmax2Ta!
!1. (19)

We note that it is the conditions (18) and (19) that
actually allow us to regard the process of thermal
coagulation as limited by heat diffusion.
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At the next step of the derivation procedure we
convert from the fields T and j to the corresponding
dimensionless ones

u5
T2Ta

Tmax2Ta

, h5
j

̂
;1, (20)

and from the physical time t and the spatial coor-
dinate z to the dimensionless variables

t85
t
t

and x85
z2z0~t !

le
, (21)

where

e5
D

Tmax2Ta
. (22)

As follows from the estimates presented in Sec. 1,
the value of e is about 0.1 and it is the ratio e that is
treated as the small parameter required for reduc-
ing the distributed model to the free boundary one.
It should be noted that this conversion from z to x8
actually corresponds to measuring the spatial
lengths in units of the thickness dpd of the layer
Qpd . Indeed, by virtue of Eq. (6) from (21) we get
z5z01x8dpd .

In this section we will go to the limit e→0, fixing
the value of

u05
T02Ta

Tmax2Ta
. (23)

In other words, we will regard e as a rather small
parameter.

In terms of the given dimensionless variables, the
system of Eqs. (12) and (13) can be represented in
the form

e2
]u

]t8
5eu

]u

]x8
1

]

]x8 S F̂~z!
]u

]x8D1e2~q82hu!,

(24)

e
]z

]t8
5u

]z

]x8
2ez expH u2u0

e J , (25)

where we have introduced the dimensionless heat
generation rate q8(z ,t) and the velocity u of the in-
terface G by the expressions

q85
qt

cr~Tmax2Ta!
&1, (26)

u5
t

l
qn;1 (27)

and the given estimates follow from (16) to (19). In
addition from (16) to (17) we get

]u

]t8
;1,

]u

]x8
;e (28)
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and for x&1

]z

]t8
;1,

]z

]x8
;1. (29)

So at a lower order in the small parameter e, the
system of Eqs. (24) and (25) is equivalent to the fol-
lowing

F̂~z!
]u

]x8
52eJ0~t8!, (30)

u
]z

]x8
5ez expH u2u0

e J , (31)

where J0(t8);1 is a function of the time t8 only. It
should be pointed out that the right-hand side of
Eq. (31) is not small in spite of containing the factor
e. Indeed, the exponential factor, in turn, can be
large for a small variation of the temperature u in
the layer Qpd of partially damaged tissue. More-
over, from this it follows that for x8&1

uu~ x̃8,t8!2u0~x8,t8!u&
e

ln e
. (32)

Dividing (31) by (30) and integrating the obtained
equation, we get the solution specifying the field
u(z) as a function of z

uJ0

e
E

z

1 dz8

F̂~z8!z8
5expH u~z!2u0

e
J . (33)

In this way we have also taken into account that at
distant points of the undamaged tissue, x@1, the
ratio @u02u(z)#/e must be great and z.1. Setting
z5z0 and regarding the value of u(z0) as the di-
mensionless coagulation temperature ucg5u(z0),
we obtain the desired relation between the dimen-
sionless velocity u of the interface G and the char-
acteristics of the temperature distribution:

u5J0
e

J0
expH ucg2u0

e J , (34)

where the constant J0;1 is specified by the expres-
sion

1

J0

5E
z0

1 dz

F̂~z!z
. (35)

Returning to the physical variables, we get from
formula (34) the basic result, namely, the expression
relating the velocity qn of the interface G, the value
Tcg of the temperature at this interface, and the
boundary value of the temperature gradient, for ex-
ample, on the necrosis side ¹nTuG20 :

qn5J0
D

u¹nTuG20
v0 expH Tcg2T0

D J



INTERFACE DYNAMICS OF THERMAL COAGULATION
5J0
D

u¹nTuG20
v~Tcg!. (36)

By virtue of (30) we also find that at a lower order
in the small parameter e, the heat flux has no sharp
increase at the interface G, so

k¹nTuG205keff¹nTuG10 (37)

[in the necrosis domain F̂(z50)51].
Expressions (36) and (37) are the essence of the

free boundary model for the dynamics of local ther-
mal coagulation and should lead to the same results
as those predicted by the distributed model. In-
deed, inside the necrosis domain where z!1, we
may set z50 in Eq. (1) whereas inside the living
tissue it is reasonable to set z51 in this bioheat
equation. In both regions the characteristic spatial
scales of temperature variations are about l and so
the bioheat equation of the present form is well jus-
tified. In other words, let Qn be the necrosis do-
main. Then for internal points rPQn we write

cr
]T
]t

5k¹2T1q , (38)

and for external points r¹Qn

cr
]T
]t

5keff¹
2T2fcbrbj~T2Ta!1q , (39)

where keff is the effective thermal conductivity of
living tissue. This value, as well as the correspond-
ing value of the factor f , can be directly obtained
based on the regular procedure of averaging the
microscopic equations for heat transfer. This equa-
tion leads to the same dynamics of the temperature
field as the distributed model. Boundary conditions
(36) and (37) join the temperature fields in the two
regions, completing the description of necrosis
growth in the frames of the free boundary model.

It should be pointed out that the free boundary
model in its turn can be regarded as the initial point
for modeling necrosis growth caused by local ther-
mal coagulation. Indeed, all the information re-
quired for specifying the dependence qn(T) can be
obtained from the experimental data for the tem-
perature dependence of the threshold exposure
time at a fixed temperature. The only parameter of
this model that contains the particular information
about the properties of heat transfer in the real
layer of partially damaged tissue is the numeric fac-
tor J0 of the order unity, J0;1. Keeping the latter in
mind, we may regard the analysis presented in this
section as substantiation of the fact that necrosis
growth caused by local thermal coagulation and
limited by heat diffusion is insensitive to the par-
ticular details of heat transfer inside partially dam-
aged tissue. Thus, it is justification of the distrib-
uted model rather than the free boundary model.
Nevertheless, the results obtained indicate the par-
JOU
ticular form of the equations governing the dynam-
ics of the necrosis interface that should be used in
simulating local thermal coagulation.

To avoid misunderstanding, we note that the
growth of the necrosis domain as a whole is certain
to depend on the tissue thermal parameters. In ad-
dition, in general, the factor J0 is a function of the
blood perfusion rate j resulting from the depen-
dence F(j). However, because of the fractal struc-
ture of the vascular network, the function J0(j) can
be regarded as a constant for typical variations of
the tissue parameters.

Moreover, there is an additional reason to regard
the free boundary model as the initial basis for
simulating necrosis growth limited by heat diffu-
sion. The fact is that we can obtain expression (36)
at the semiquantitative level without using the dis-
tributed model at all and taking into account only
the general properties of the tissue thermal coagu-
lation. Indeed, let thermal coagulation be under
way in a layer Qpd at a given moment and the mean
temperature and the mean temperature gradient in-
side this layer be Tcg and ¹nTpd , respectively. Then
the characteristic thickness dpd of the layer Qpd can
be estimated by the expression

dpd;
D

¹nTpd
(40)

as has been demonstrated in Sec. 1. In fact, when
necrosis growth due to thermal coagulation is lim-
ited by heat diffusion, the temperature distribution
is substantially nonuniform in space. Therefore, on
one hand, in the necrosis region, where the tem-
perature exceeds Tcg by a value greater than D: (T
2Tcg.D) and thus v(T)@v(Tcg), tissue coagula-
tion has to be complete. On the other hand, in the
region of undamaged tissue, the temperature is suf-
ficiently low [Tcg2T.D ; and so, v(T)!v(Tcg)] so
that the tissue does not have enough time to coagu-
late at such temperatures. Therefore tissue coagula-
tion can be under way only in the region where
uT2Tcgu&D , from which we immediately get esti-
mate (40).

After a lapse of the time interval t thr;1/v(Tcg),
the tissue in the layer Qpd has to coagulate practi-
cally completely. This is equivalent to the displace-
ment of the layer Qpd over the distance dpd . Thus, if
we observe the points at which z;0.5, then we will
see that these points move at the velocity

q;
dpd

t thr
;

D

¹pdT
v~Tcg!. (41)

Estimate (41) exactly coincides with expression (36)
within a factor on the order of unity. Therefore the
basic expression (36) of the free boundary model
reflects the general properties of thermal coagula-
tion rather than being directly related to the par-
ticular phenomenological approximations of the
distributed model.
107RNAL OF BIOMEDICAL OPTICS d JANUARY 1998 d VOL. 3 NO. 1



LUBASHEVSKY, PRIEZZHEV, AND GAFIYCHUK
Fig. 2 The form of the necrosis region under consideration.
Beyond the present analysis, however, remains
the basic question of whether the value D on the
order of 3 to 5°C is small enough for the ratio e to
be regarded as a small parameter. This problem
will be analyzed in the next section by numerically
comparing the dynamics of necrosis growth pre-
dicted by the two models under various physical
conditions.

3 MODEL USED IN THE NUMERICAL
SIMULATION

We simulated necrosis growth in the tissue phan-
tom shown in Figure 2. The applicator indicated by
the dashed circle locally heats the tissue to high
temperatures on the order of Tb;100°C, which
causes immediate tissue coagulation in the nearest
neighborhood of the applicator (dotted region in
Figure 2). This can be the case, for example, because
of the direct heat exchange between the tissue and
the applicator or irradiation by laser light and its
absorption in an adjacent thin layer. The latter case
corresponds to additional internal cooling of the
applicator boundary, so the maximum Tb of the
temperature attained just near the applicator does
not depend on heat diffusion into the surrounding
tissue. So keeping in mind possible vaporization
control over the temperature maximum, we treat
the value Tb as a boundary temperature fixed at the
interface of a certain radius r0 . Generalizing both
these situations, let us confine ourselves to the
analysis of local coagulation assuming that:

At the initial time t50 the necrosis region under
consideration is a layer of zero thickness whose fi-
nite radius is r0 : z(r)50 and T(r)5Ta'37°C for r
.r0 .

The subsequent necrosis growth is governed solely
by heat diffusion, i.e., we set q(r,t)50 for r.r0 .

At the boundary r5r0 , the temperature is a fixed
value: T(r0)5Tb'100°C.

At distant points the tissue temperature is equal to
Ta : T→Ta as r→` .

In other words, we confine ourselves to the re-
gion r.r0 where the layer r0,r,r01R(t) of thick-
ness R(t) represents the necrosis domain whose
growth is directly governed by heat diffusion only.
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The processes in the region r,r0 are not consid-
ered. We ignore the real dynamics of initial coagu-
lation in the immediate vicinity of the applicator
boundary. The typical duration of the latter process
can be estimated as 1/v(Tb),1 s for an applicator
directly heating the surrounding tissue and as
max$1/v(Tb),q(r0)/@cr(Tb2Ta)#% for the laser ap-
plicator. In the present analysis this duration is re-
garded as a small parameter. Keeping in mind ap-
plicators of various forms, we studied necrosis
growth in one-, two-, and three-dimensional tissue
phantoms.

In order to also take into account the tissue re-
sponse to temperature variations, we should de-
scribe the dynamics of the blood perfusion rate
j(r,t). This response is due to the expansion of
blood vessels as the temperature grows. As shown
in Refs. 12, 16, and 17, at least as the first approxi-
mation, this tissue response obeys the following lo-
cal equation relating the blood perfusion rate j(r,t)
and the tissue temperature T(r,t) taken at the same
point r:

tdel
]j
]t

1jF~T !5j0 . (42)

Here j0 is the blood perfusion rate under normal
conditions, tdel is the delay time of the tissue re-
sponse, and the function F(T) is of the form

F~T !5H a1~12a!
Tvr2T
Tvr2Ta

for T,Tvr

a for T.Tvr

, (43)

where a5j0 /jmax is the ratio of j0 and the maxi-
mum jmax of the blood perfusion rate that can be
attained in living tissue from vessel expansion
caused by a temperature increase, and Tvr'45 to
46 °C is the temperature at which the blood vessels
exhaust their ability to expand. It should be noted
that the tissue response to local temperature varia-
tions is sufficiently strong that the blood perfusion
rate can locally increase by tenfold.18

In the next section we present the results for the
dynamics of necrosis growth obtained numerically
for the following typical values of the main tissue
parameters: k;731023 W/cm·K, c;3.5 J/g·K, r
;1 g/cm3, and j0;0.3 min−1. We also have set the
constants F52 and f50.5. By the corresponding
renormalization, the above-stated models can be re-
duced to the dimensionless form. In particular we
have converted from t and r to the dimensionless
variables t8 and r8 such as t5t0t8 and r5l0r8,
where

t05
1

fj0
and l05A k

crfj0
,

and in obtaining the results to be presented we
have set t056 min and l0510 mm for the given val-
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ues of these parameters. We will compare the dy-
namics of necrosis growth, namely, the time depen-
dence of the thickness R(t) of the necrosis layer
and the coagulation temperature Tcg(t) predicted
by the free boundary model with that given by the
distributed model. In the latter case we have used
expression (10) and specified the required depen-
dence of the effective thermal conductivity keff on
the fraction z of undamaged tissue by the function
F̂(z)5(F21)z11. In addition, for the distributed
mode, the necrosis interface G has been specified by
the condition zurPG50.5. The temperature depen-
dence v(T) (where T is in degrees Celsius) has
been taken in the form

v~T !50.23expFT260
3.6 G ~1/min!, (44)

which corresponds to the available experimental
data for the threshold exposure time t thr (in sec-
onds) required of tissue coagulation under a fixed
temperature.6

4 DYNAMICS OF NECROSIS GROWTH

In Figure 3 we demonstrate the typical form of the
temperature distribution T(r), the distribution of
the fraction z(r) of undamaged tissue, and the
blood perfusion rate j(r) obtained for a one-
dimensional tissue phantom in the frames of the
distributed model. As seen in Figure 3, the region in
which the fraction z of undamaged tissue varies
substantially in space is small. So on spatial scales
characterizing the temperature decrease, such an
increase in the value z(r) may be treated as a sharp
jump. The latter actually justifies using the free
boundary model for the given values of the physi-
cal parameters, namely, assigning to an effective

Fig. 3 The typical form of the spatial distribution of the tissue tem-
perature (curve 1), blood perfusion rate (curve 2), and fraction of
undamaged tissue (curve 3). (In obtaining the curves we set jmax
510 j0 and tdel'1 min and considered a one-dimensional tissue
phantom.)
JOUR
necrosis boundary a certain coagulation tempera-
ture Tcg and certain values (on both sides) of the
temperature gradient.

Figure 4 illustrates another characteristic of local
thermal coagulation. The free boundary approxi-
mation is rigorously justified provided the tempera-
ture distribution inside the layer of partially dam-
aged tissue can be regarded as quasi-stationary.
The latter is the case when, in particular, the time
variations d tTcg of the coagulation temperature Tcg
are small during necrosis growth, which in math-
ematical terms may be stated as the condition
d tTcg→0 as D→0. Figure 4 demonstrates that this
condition may be fulfilled. Indeed, the smaller the
parameter D of the tissue damage rate v(T ,D), the
more the time variations of the coagulation tem-
perature Tcg are smothered, except for a short initial
period of necrosis growth. In addition, this feature
of local thermal coagulation justifies, at least at the
qualitative level, the model proposed in our previ-
ous papers,7,8 which considers the coagulation tem-
perature Tcg as fixed during necrosis growth.

Figure 5 demonstrates the fact that the distrib-
uted model [(1) and (2)] leads to the same dynamics
of necrosis growth as that predicted by the free
boundary model [Eqs. (36) through (39)] for one-,
two-, and three-dimensional tissue phantoms [Fig-
ures 5(a,b), 5(c,d), and 5(e,f), respectively].

These results have been obtained for a tissue
phantom with a strong (jmax510 j0

) and delayed
(tdel=2 min) response to temperature variations
and so provide in themselves the characteristic fea-
tures of necrosis growth in tissue without a re-
sponse as well as with a strong immediate re-
sponse.

The results not only clearly show that the particu-
lar details of thermal coagulation in a partially
damaged layer are not a relevant factor but also
indicate that the value of e for u'3 to 5°C can be
treated as a small parameter of perturbation theory.

Fig. 4 The time dependence of the temperature Ti at the point r i
where z(r i)50.5 for different values of the parameter D. (Curves 1
and 2 correspond to D51.5°C and D55.0°C, respectively. In
obtaining the curves we considered a one-dimensional phantom of
the tissue without response to temperature variation.)
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So the two models may be treated as equivalent,
but the free boundary one does not contain self-
inconsistent elements. In addition, the free bound-
ary model can be used to construct a faster numeri-
cal algorithm for simulating necrosis growth
because in this model we need not consider the thin
layer of partially damaged tissue. So in this case we
may deal with the partition of the temperature field
only in the necrosis region and the region of un-
damaged tissue where the temperature is smooth
enough.

5 CONCLUSION

In this paper we have shown that:

• Necrosis growth caused by heat diffusion-
limited thermal coagulation depends only
weakly on the particular details of heat trans-
fer inside the region of partially damaged tis-
sue (Sec. 2).

• The region of partially damaged tissue is a
thin layer, dz;1 mm (Sec. 1), and so the dy-
namics of necrosis growth can be described in
terms of a certain interface moving in space.
Its motion is governed by the tissue tempera-
ture at this interface and the boundary value
of the temperature gradient (Sec. 2).

Fig. 5 Comparison of necrosis growth predicted by the distributed
model (DM) and the free boundary model (FBM). The thickness
R( t) of the necrosis layer and the temperature Ti(t) at the necrosis
interface are plotted against time t for heat sources of (a,b) the
plane, (c,d) cylindrical, and (e,f) spherical forms. (In numerical cal-
culations we set t52 min and jmax510 j0 . For the distributed
model, the value Ti is specified as T(ri) at the point r i at which
z(r i)50.5.)
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• Although the mean field models (similar to
the distributed model) dealing with the aver-
aged tissue temperature (i.e., ignoring random
temperature nonuniformities due to the ves-
sel’s discreteness) do not hold on scales on the
order of dz (Sec. 1), they can be used in mod-
eling local thermal coagulation (Secs. 3, 4).

Based on the results obtained, we have proposed
a new mathematical model for necrosis growth
caused by heat diffusion-limited thermal coagula-
tion. This model:

• regards the layer of partially damaged tissue
as a layer of infinitely small thickness, the mo-
tion of which is governed by the boundary
values of the temperature and its gradient; it
thereby provides a self-consistent description
of heat transfer in living tissue for modeling
local thermal coagulation;

• singles out the characteristic features govern-
ing the dynamics of the necrosis growth; and

• can be the basis of a faster numerical algo-
rithm for simulating necrosis growth because
the free boundary model deals only with the
regions where the temperature distribution
T(r,t) is a smooth field.
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