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1 Introduction
Photoacoustic tomography (PAT) is an emerging technique for
in vivo imaging of soft biological tissue.1 This hybrid modality
uses ultrasound to detect optical contrast, combining the high
resolution of acoustic methods with the spectroscopic capability
of optical imaging. To generate a PA image, a short laser pulse is
shined into the object, the ultrasonic waves emitted following
the heating of the tissue are measured, and an image of the
absorbed optical energy field is recovered. Whereas purely opti-
cal methods suffer from poor spatial resolution, acoustic waves
propagate with minimal scattering, and PAT can achieve 100 μm
resolution at depths of several centimeters. However, PA images
provide only qualitative information about the tissue, and are not
directly related to tissue morphology and functionality. The
principal difficulty is that the PA image is the product of
both the optical absorption coefficient (which is directly related
to underlying tissue composition) and the light distribution
(which is not). This severely restricts the range of applications
for which PAT is suitable.

Quantitative photoacoustic tomography (QPAT) aims to pro-
vide clinically valuable images of the optical absorption and
scattering coefficients, or chromophore (light-absorbing mole-
cules) concentrations from conventional PA images via an
image reconstruction method.2,3 A model of light propagation
is required to relate the absorbed optical energy to the light flu-
ence and tissue parameters. The primary challenge of QPAT is
solving the nonlinear imaging problem. In particular, recovering
the scattering coefficient is especially difficult due to the weak
dependence of the absorbed energy density on scattering.

In this paper, we develop a method for solving the image
reconstruction problem for QPAT by alternating reconstruction
and segmentation steps in an automated iterative process. We
introduce a probabilistic model that describes optical properties
in terms of a limited number of optically distinct classes,
which may correspond to tissues or chromophores. These are

identified and characterized by a classification, or segmentation,
algorithm. This approach allows for the use of information
retrieved by the classification in the reconstruction stage and
vice versa. The aim of the reconstruction is to choose solutions
for which the image parameters take values close to a finite set
of discrete points. The aim of the classification algorithm is to
progressively improve the parametric optical model and correct
for errors in the initial assumptions. Multinomial models have
been employed previously in the related fields diffuse optical
tomography4 and electrical impedance tomography.5 For
QPAT, the main advantage is that this approach enables accurate
recovery of both the absorption and scattering coefficients
simultaneously.

2 Numerical Methods

2.1 Quantitative Photoacoustic Imaging

A conventional PAT image is proportional to the absorbed opti-
cal energy

EQ-TARGET;temp:intralink-;e001;326;275HðrÞ ¼ Γ̂ðrÞμaðrÞϕ½μaðrÞ; μ 0
sðrÞ� r ∈ Ω; (1)

where r is a position vector within the domain Ω, μa and μ 0
s are

the optical absorption and reduced scattering coefficients, ϕ is
the optical fluence, and Γ̂ is the Grüneisen parameter. The
Grüneisen parameter represents the efficiency with which the
tissue converts heat into acoustic pressure, and is often taken
to be the constant Γ̂ðrÞ ¼ 1 ∀ r ∈ Ω. The fluence is dependent
on the optical parameters and illumination pattern in the whole
domain. The problem of recovering the optical parameters
ðμa; μ 0

sÞ from a conventional PAT image is known as the “quan-
titative” problem. The optical absorption μa is of particular inter-
est because it is fundamentally related to underlying tissue
physiology and functionality, and encodes clinically useful
information such as tissue oxygenation levels and chromophore
concentrations. Conversely, the absorbed energy density H
depends nontrivially on optical absorption and thus is not*Address all correspondence to: Emma Malone, E-mail: e.malone@ucl.ac.uk
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directly related to tissue morphology because it is distorted
structurally and spectrally by the nonuniform light fluence.

2.2 Diffusion Model of Light Transport

In order to recover the optical parameters ðμa; μ 0
sÞ, a model

of light propagation within the tissue is required. For highly
scattering media and those far from boundaries and sources,
a low-order spherical harmonic approximation to the “radiative
transfer equation” is suitable. The “diffusion approximation” is
given by6

EQ-TARGET;temp:intralink-;e002;63;634½μa − ∇ · κðrÞ∇�ϕðrÞ ¼ qðrÞ; (2)

where qðrÞ is an isotropic source term and κ ¼ 1∕3μ 0
s is the dif-

fusion coefficient.
We set Robin boundary conditions

EQ-TARGET;temp:intralink-;e003;63;570ϕðrÞ þ 1

2A
κðrÞn̂ · ∇ϕðrÞ ¼ 0 r ∈ δΩ; (3)

where A accounts for the refractive index mismatch at the
boundary.

2.3 Minimization-Based Quantitative Photoacoustic
Tomography Imaging

In this paper, we adopt a gradient-based minimization approach
to image reconstruction. Typically, both μa and μ 0

s are unknown
and need to be recovered simultaneously from the absorbed
energy density. An objective function is defined, which mea-
sures the distance between the conventional PAT image Hm

and the data predicted by the model for the current estimates
Hðμa; μ 0

sÞ

EQ-TARGET;temp:intralink-;e004;63;389E ¼ 1

2

Z
Ω
½Hm −Hðμa; μ 0

sÞ�2dΩ: (4)

In order to treat the problem for a generic geometry, the finite
element method is employed, whereby a weak formulation of
the diffusion approximation [Eq. (2)] is considered. A discreti-
zation of the domain is defined, and the fluence and optical
parameters are expressed in terms of the same piecewise-linear
basis functions uiðrÞ: χ ≈

P
iχiuiðrÞ for χ ∈ fμa; μ 0

s;ϕg, where
χi are nodal coefficients and i ¼ 1; : : : ; N.

We assume that the data dm is the absorbed energy density
Hm, projected onto a particular basis fΨjg,
EQ-TARGET;temp:intralink-;e005;63;247

dm ¼ fdmj ; j ¼ 1; : : : ; Ng;

dmj ¼
Z
Ω
HmðrÞΨjðrÞdΩ ¼ hΨj; Hmi: (5)

Choices for fΨjg include:

1. Point sampling ΨjðrÞ ¼ δðr − rjÞ,
2. Piecewise-linear sampling Ψj ¼ uj,

3. Sinc sampling Ψj ¼ sincðjr − rjjÞ.
Substituting into the objective function [Eq. (4)] leads to the

discrete form of the objective function

EQ-TARGET;temp:intralink-;e006;326;752E ¼ 1

2

X
j

½dmj − hΨj; Hðμa; μ 0
sÞi�2

¼ 1

2

X
j

½dmj − hΨj; μaϕi�2: (6)

If a single illumination source is used and both absorption
and scattering are undetermined, the problem is ill posed.2 In
this study, the nonuniqueness of the solution was removed by
using multiple illumination patterns,7–9 thus the objective func-
tion must be summed over the number of sources. In the follow-
ing, we have omitted this sum for ease of notation. Prior
information regarding the solution can be included by adding
a regularization term

EQ-TARGET;temp:intralink-;e007;326;594E ¼ 1

2

X
j

ðdmj − hΨj; μaϕiÞ2 þRðμ 0
a; μ 0

sÞ: (7)

In the Bayesian framework, an image is obtained by maximizing
the posterior probability of the parameters, given the data

EQ-TARGET;temp:intralink-;e008;326;524pðμa; μ 0
s jdmÞ ∝ pðdmjμa; μ 0

sÞpðμa; μ 0
sÞ: (8)

Under this interpretation, the regularization term R is given by
the negative log of the prior probability distribution

EQ-TARGET;temp:intralink-;e009;326;476Rðμa; μ 0
sÞ ¼ − log pðμa; μ 0

sÞ: (9)

2.4 Gradient Calculations

Cox et al.10 have shown that, for the continuous case, the gra-
dient of Eq. (4) with respect to μa at position r0 is given by

EQ-TARGET;temp:intralink-;e010;326;393

∂E
∂μa

����
r0
¼ −ϕðHm −HÞjr0 þ ϕ · ϕ�jr0 ; (10)

where the “adjoint” light field ϕ� is the solution to the equation

EQ-TARGET;temp:intralink-;e011;326;337½μa − ∇ · κðrÞ∇�ϕ�ðrÞ ¼ μaðHm −HÞ: (11)

In the following, we derive the expression for the gradient in
the discrete case. The sampled forward model can be expressed
as a vector H ¼ fHj; j ¼ 1; : : : ; Ng
EQ-TARGET;temp:intralink-;e012;326;273

Hj ¼
Z
Ω
HðrÞΨjðrÞdΩ ¼ hΨj; Hi:

¼
X
ik

μa iϕk

Z
Ω
ΨjðrÞuiðrÞukðrÞdΩ ¼ ϕTCjμa; (12)

where Cj is a sparse matrix indexed by i, k where the support of
the basis functions ΨjðrÞ, uiðrÞ, ukðrÞ overlap. Taking the
derivative of Eq. (6) with respect to μa i, we have

EQ-TARGET;temp:intralink-;e013;326;167

∂E
∂μa i

¼ −
X
j

�
∂Hj

∂μa i

�
ðdmj −HjÞ: (13)

Using the expression for the absorbed energy density [Eq. (12)],

EQ-TARGET;temp:intralink-;e014;326;107

∂Hj

∂μa i
¼ eTi C

jϕþ μTaCj ∂ϕ
∂μa i

; (14)
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where ei is a vector of zeros with a single 1 in position i.
Substituting into Eq. (13) gives

EQ-TARGET;temp:intralink-;e015;63;730

∂E
∂μa i

¼ −
X
j

�
eTi C

jϕþ μTaCj ∂ϕ
∂μa i

�
ðdmj −HjÞ: (15)

The first term in Eq. (15) is

EQ-TARGET;temp:intralink-;e016;63;671X
j

eTi C
jϕðdmj −HjÞ¼

X
j;i;k

eiC
j
ikϕkðdmj −HjÞ

¼
X
j;k

ϕkðdmj −HjÞ
Z
Ω
ΨjðrÞuiðrÞukðrÞdΩ

¼ϕTEiðdm−HÞ; (16)

where Ei is given by a reordering of Cj
ik

EQ-TARGET;temp:intralink-;e017;63;567Ei
kj ¼

Z
Ω
ΨjðrÞuiðrÞukðrÞdΩ: (17)

Note that while Cj is symmetric, in general, Ei is not.
It remains to determine ∂ϕ∕∂μa i. The discrete form of the

DA model [Eq. (2)] assumes the form11

EQ-TARGET;temp:intralink-;e018;63;491ðMþKþ FÞϕ ¼ Q; (18)

where

EQ-TARGET;temp:intralink-;e019;63;449Mjk ¼
X
i

μa i

Z
Ω
uiujukdΩ; (19)

EQ-TARGET;temp:intralink-;e020;63;409Kjk ¼
X
i

κi

Z
Ω
ui∇uj · ∇ukdΩ; (20)

EQ-TARGET;temp:intralink-;e021;63;369Fjk ¼
X
i

1

2A

Z
∂Ω

ujukdS; (21)

EQ-TARGET;temp:intralink-;e022;63;328Qj ¼
X
i

qi

Z
Ω
uiujdΩ: (22)

Taking the derivative of Eq. (18) with respect to the i’th coef-
ficient of μa,

EQ-TARGET;temp:intralink-;e023;63;265ðMþKþ FÞ ∂ϕ
∂μa i

¼ −Vi
μaϕ; (23)

where

EQ-TARGET;temp:intralink-;e024;63;210Vi
μa;jk

¼
Z
Ω
uiujukdΩ (24)

is given by the derivative of the system matrix. We define the
adjoint field ϕ� as the solution to the equation

EQ-TARGET;temp:intralink-;e025;63;150ðMþKþ FÞϕ� ¼ Q�; (25)

where

EQ-TARGET;temp:intralink-;e026;63;108Q� ¼
X
j

μTaCjðdmj −HjÞ (26)

is the adjoint source. Taking ϕ� Equation (23) −ð∂ϕ∕∂μa iÞ.
Eq. (25), we obtain

EQ-TARGET;temp:intralink-;e027;326;730

X
j

μTaCj ∂ϕ
∂μa i

ðdmj −HjÞ ¼ −ϕTVi
μaϕ

�: (27)

Substituting into Eq. (15) gives the expression for the derivative
with respect to μa i

EQ-TARGET;temp:intralink-;e028;326;661

∂E
∂μa i

¼ ϕT½Vi
μaϕ

� − Eiðdm −HÞ�: (28)

The derivative with respect to μ 0
s i can be derived analogously

EQ-TARGET;temp:intralink-;e029;326;606

∂E
∂μ 0

s i
¼ −

∂κi
∂μ 0

s i
ϕTVi

μ 0
s
ϕ�; (29)

where

EQ-TARGET;temp:intralink-;e030;326;551Vi
μ 0
s;jk

¼
Z
Ω
ui∇uj · ∇ukdΩ (30)

and ð∂κi∕∂μ 0
s iÞ ¼ −1∕3μ 02

s i. Note that calculation of the gradient
requires only two runs of the forward model. The forward prob-
lem was solved using the Toast++ software package.11

Choosing point-sampling ΨjðrÞ ¼ δðr − rjÞ gives simply
Cj ¼ Ei ¼ I. In this study, we chose piecewise-linear sampling
Ψj ¼ uj, so we had Cj ¼ Ei ¼ Vi

μa and

EQ-TARGET;temp:intralink-;e031;326;446

∂E
∂μa i

¼ ϕTVi
μaðϕ� − dm þHÞ: (31)

3 Reconstruction-Classification Method for
Quantitative Photoacoustic Tomography

A reconstruction-classification scheme is devised, which ena-
bles the recovery μa and μ 0

s by approaching the image
reconstruction and segmentation problems simultaneously. At
each reconstruction step, we minimize a regularized objective
function, where the regularization term is given by a mixture
model. At each classification step, the result of the previous
reconstruction step is employed to update the class parameters
for the multinomial model. We alternate between reconstruction
and classification steps for a fixed number of iterations (Fig. 1).

3.1 Mixture Model for μa and μ 0
s

In this section, we introduce a probability model for μa and μ 0
s,

which encodes prior knowledge about the optical parameters
and allows us to bias the solution of the imaging problem
accordingly. We assume that an array of labels ζ i can be deter-
mined for each node, such that

EQ-TARGET;temp:intralink-;e032;326;183ζij ¼
�
1 if the i 0th node is assigned to the j 0th class;
0 otherwise:

(32)

The labels constitute “hidden variables” on which the image
parameters are dependent. For each class j ¼ 1; : : : ; J, a
mean vector mj ¼ ðμ̄a j; μ̄ 0

s jÞ ∈ R2 is defined, and the covari-
ance of each class is described by matrix Σj ∈ R2×2.
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We assume that if ζij ¼ 1, the probability distribution for
xi ¼ ðμa i; μ 0

s iÞ is given by a multivariate Gaussian distribution

EQ-TARGET;temp:intralink-;e033;63;730pðxijθjÞ ¼ N ðmj;ΣjÞ; (33)

where θj indicates the set of class parameters ðmj;ΣjÞ.
The prior probability distribution of the class properties θj is

given by the conjugate prior to the Gaussian distribution. Prior
information about the distribution of the class means or cova-
riances can be encoded by choosing the parameters of the con-
jugate prior accordingly. Using a noninformative prior for the
class means we have pðmjÞ ∝ 1. The conjugate prior distribu-
tion for the covariance of a normal distribution is given by
the normal inverse Wishart distribution (NIW):

EQ-TARGET;temp:intralink-;e034;63;599NIWðνj;ΓjÞ ¼ jΣjj−ðνþdþ1Þ∕2 exp

�
−
1

2
TrðΓjΣ−1

j Þ
�
; (34)

where d is the dimension of the domain, νj indicates the number
of degrees of freedom, and Γj is a scaling matrix. If the prior is
noninformative, then νj ¼ 0 and Γj ¼ 0, and the probability dis-
tribution of the class parameters becomes

EQ-TARGET;temp:intralink-;e035;63;511pðθjÞ ∝ jΣjj−ðdþ1Þ∕2; (35)

which is known as Jeffreys prior.
The probability that the set of labels ζ i ¼

fζi1; : : : ; ζij; : : : ; ζiJg is assigned to the i’th node is given by
a multinomial distribution

EQ-TARGET;temp:intralink-;e036;63;433pðζ ijλÞ ¼
Y
j

λ
ζij
j ; (36)

where λj is the overall probability that a node is assigned to the
j’th class. Therefore, the joint probability for ðxi; ζiÞ is given by
the product

EQ-TARGET;temp:intralink-;e037;63;356pðxi; ζ ijθ; λÞ ¼ pðxijζ i; θÞpðζ ijλÞ ¼
Y
j

½λjpðxijθjÞ�ζij : (37)

By marginalizing over all possible values of the indicator var-
iables ζij, a “mixture of Gaussians”model for the optical param-
eters is obtained

EQ-TARGET;temp:intralink-;e038;63;279pðxijθ; λÞ ¼
Z
ζi

pðxi; ζ ijθ; λÞdζi ¼
X
j

λjpðxijθjÞ: (38)

Finally, for independent nodes, the prior of the image is given by

EQ-TARGET;temp:intralink-;e039;63;221pðxjθ; λÞ ¼
Y
i

X
j

λjpðxijθjÞ: (39)

3.1.1 Reconstruction step

The objective function takes the form of Eq. (7), where at iter-
ation t of the reconstruction-classification algorithm, the regu-
larization is given by Eqs. (9) and (39)

EQ-TARGET;temp:intralink-;e040;63;119Rtðμa; μ 0
sÞ ¼ − log pðxjθt; λtÞ ¼ − log N ðx̄;Σx̄Þ

¼ τ

2

��Lx̄ðx − x̄Þ��2; (40)

where τ is a regularization parameter and

EQ-TARGET;temp:intralink-;e041;326;741x̄i ¼
X

j
ζij · mj

���
MAPðζÞ

¼ mj 0 ∈ R2 (41)

is obtained by fixing the labels to the “maximum a posteriori”
estimate, given the results of the previous iteration

EQ-TARGET;temp:intralink-;e042;326;679MAPðζÞ ¼ argmax
ζ

pðζjxt−1; θt−1; λt−1Þ; (42)

which is calculated in the classification step (see Sec. 3.1.2). The
weighting matrix Lx̄ is the Cholesky decomposition of Σ−1

x̄ ,
where Σx̄ ∈ R2N×2N is a sparse matrix of which the i’th 2 × 2

block along the diagonal is Σj 0 if the i’th element belongs to
the j’th class.

In order to sphere the solution space, that is, to render the
space dimensionless, we performed a change of variables μa →
μa∕μa0 and μ 0

s → μa∕μ 0
s0, where ðμa 0; μ 0

s 0Þ is the initial guess for
the optical parameters (in this study, we initialized to the homo-
geneous background). Given the size of the problem, we chose
a gradient-based optimization method in order to reduce
memory use and computational expense.12 The minimization
was performed using the limited-memory Broyden–Fletcher–
Goldfarb–Shanno (L-BFGS) method,13 with a storage memory
of six iterations.

3.1.2 Classification

The purpose of the classification step is to update the multino-
mial model using the result of the previous reconstruction step.
First, the expected values of the labels ζ tþ1 are computed for the
current class parameters ðθt; λtÞ and image xt ¼ ðμta; μ 0t

s Þ (E-
step). Then the model parameters are updated by maximizing
the posterior probability (M-step)

EQ-TARGET;temp:intralink-;e043;326;385pðθ; λjxtÞ ∝ pðxtjθ; λÞpðθ; λÞ: (43)

E-step: The “responsibility” rtij is a measure of the proba-
bility that the i’th node is assigned to the j’th class.
Using Bayes’ theorem and the Gaussian mixture
model [Eq. (38)], we have

EQ-TARGET;temp:intralink-;e044;326;292

pðζij ¼ 1jxti; θt; λtÞ ¼
pðxijζij ¼ 1; θtÞpðζij ¼ 1Þ

pðxijθ; λÞ

¼ λtjpðxtijθtjÞP
jλ

t
jpðxtijθtjÞ

¼ rtnj: (44)

The expectation for the indicator values is

EQ-TARGET;temp:intralink-;e045;326;205Eðζijjxti; θt; λtÞ ¼
Z

ζijpðζij ¼ 1jxti; θt; λtÞdζij
¼ 0 × pðζij ¼ 0jxti; θt; λtÞ þ 1 × pðζij ¼ 1jxti; θt; λtÞ
¼ rtij:

(45)

Therefore, the MAP estimate for the labels is
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EQ-TARGET;temp:intralink-;e046;63;752ζtþ1
ij ¼

�
1 if rtij ismaximum ∀ j;
0 otherwise;

(46)

which can be used in Eq. (42).
M-step: The parameters ðθ; λÞ are chosen in order to maxi-

mize the log posterior

EQ-TARGET;temp:intralink-;e047;63;684ðθtþ1; λtþ1Þ ¼ argmax
ðθ;λÞ

log pðxtjθ; λÞ þ log pðθ; λÞ:
(47)

Averaging over all possible values of ζ gives
EQ-TARGET;temp:intralink-;e048;63;620

log pðxtjθ; λÞ þ log pðθ; λÞ ¼
Z
ζ
log pðxt; ζjθ; λÞdζ

þ log pðθ; λÞ: (48)

Using “Jensen’s inequality”14 and ignoring terms that do
not depend on ðθ; λÞ, we obtain a lower bound for the
log prior
EQ-TARGET;temp:intralink-;e049;63;526

Bðθ;λÞ¼
X
i

X
j

rtij log½λjpðσnjθjÞ�þlogpðλÞþlogpðθÞ

¼
X
i

X
j

rtij

�
logðλjÞþlogðjΣjjÞ

−
1

2
ðxiðnÞ−mjÞ0Σ−1

j ðxiðnÞ−mjÞ
�

þ
X
j

�
ðαj−1ÞlogðλjÞ−

νjþdþ1

2
logjΣjj

�
: (49)

Maximizing Bðθ; λÞ for
P

jλj ¼ 1 and using nonin-
formative priors, we obtain the update rules for the
model parameters

EQ-TARGET;temp:intralink-;e050;63;356λtþ1
j ¼

P
ir

t
ij

N
; (50)

EQ-TARGET;temp:intralink-;e051;63;313mtþ1
j ¼

P
ir

t
ijxiP

i
rtij

; (51)

EQ-TARGET;temp:intralink-;e052;63;266Σtþ1
j ¼

P
ir

t
ijðxi −mjÞðxi −mjÞT þ ΓjP

i
rtij þ νj þ dþ 1

: (52)

3.2 Class Means Initialization

The number of classes J and the class means mj were initialized
by automatically segmenting the result of the first reconstruction
step and averaging over the segmented areas. To segment the
image [e.g., see Fig. 2(a)], we looked at a binned histogram
of the image of μa and chose the value μa h for which the number
of occurrences was highest [Fig. 2(c), column 1]. We found the
first node index h for which the value μa h occurs, and identified
the corresponding scattering value μ 0

s h. Having chosen a covari-
ance matrix Σh, we computed a map of the multivariate normal
probability of the ðμa; μ 0

sÞ images, with mean ðμa h; μ 0
s hÞ

[Fig. 2(c), column 2]. A suitable choice for Σh is the initial
covariance of the classes. Then we selected a tolerance level

tolh at which to truncate the probability map, and selected all
nodes with probability higher than the tolerance as belonging
to the same class as node h [Fig. 2(c), column 3]. We repeated
this process on the remaining nodes until all nodes were clas-
sified. Thus, the number of classes was set to the number of
iterations, and the average of the optical parameters over
each class was used to initialize the class means [Fig. 2(b)].

3.3 Visualization of the Results

Results obtained using the reconstruction-classification method
are displayed alongside scatter plots of the nodal values recov-
ered in the two-dimensional (2-D) feature space ðμa; μ 0

sÞ [e.g.,
see Fig. 2(c), final column in 4]. The positions of the class
means mj ¼ ðμ̄a j; μ̄ 0

s jÞ are identified by a cross, and the class
covariances Σj are represented by ellipses. These are color-
coded by class, and are indicative of the clustering of image
nodal values around the class means.

4 Results

4.1 Two-Dimensional Validation and Reconstruction

We chose a numerical phantom defined on a 2-D circular mesh
with 1331 nodes and radius 25 mm. Four illumination sources
were placed on the boundary at angles 0, π∕2, π, and 3π∕2 rad.
In all cases, the illumination profile was a normalized Gaussian
with radius (distance from the center at which the profile drops
to 1∕e) 6 mm. The background optical parameters were set to
μa ¼ 0.01 mm−1 and μ 0

s ¼ 1 mm−1. Two circular perturbations
of radius 6 mm were added in positions (6 mm, 10 mm) and
ð−6 mm;−10 mmÞ [Fig. 3(a)]. The values of the perturbations
were μa ¼ 0.02 mm−1, μ 0

s ¼ 1.5 mm−1 and μa ¼ 0.03 mm−1,
μ 0
s ¼ 1.25 mm−1, respectively. The absorbed energy field was

simulated for each illumination, and 1% white Gaussian
noise was added [Fig. 3(b)]. The class covariances were initial-
ized to

EQ-TARGET;temp:intralink-;e053;326;356Σj ¼
�
10−6 0

0 10−1

�
∀ j ¼ 1; : : : ; 3; (53)

where the first variable was the absorption and the second was
the reduced scattering. The parameters of the Jeffreys prior were
set to Γj ¼ Σj ∀ j, νð1Þ ¼ 1 for the background class and
νð2;3Þ ¼ 10 for the perturbation classes. The number of classes
and optical parameters was initialized using the class means ini-
tialization method (Sec. 3.2) with tolh ¼ 10−5 and Σh ¼ Σj
[Eq. (53)], and the labels were initialized to 1 for the background
class and zero for all other classes. The tolerance of the L-BFGS
algorithm was set to tol ¼ 10−11, and the total number of
reconstruction-classification iterations was set to MaxIt ¼ 10
(Fig. 4). The regularization parameter τ ¼ 10−10 was chosen
by inspection. For comparison, images were reconstructed with-
out introducing a prior (Fig. 5); the images were reconstructed
by minimizing Eq. (6) using the L-BFGS method with
tol ¼ 10−12.

4.2 Three-Dimensional Validation and
Reconstruction

We chose a three-dimensional (3-D) phantom analogous to the
2-D case, defined on a cylinder with 27,084 nodes, radius
25 mm, and height 25 mm. Two spherical inclusions of radius
6 mm were placed in (6, 10, and 0 mm) and (−6, −10, and
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0 mm) [Fig. 6(a)]. Illumination sources were Gaussian in the
xy-plane constant in the z-axis, with radius 6 mm and length
25 mm [Figs. 6(b) and 6(c)]. PAT images were simulated for
four illuminations at the cardinal points, and 1% noise was
added to the absorbed energy [Fig. 6(d)]. The optical, covari-
ance, and reconstruction parameters were set to the same values
used in the 2-D case. The class initialization parameters were set
to tolh ¼ 10−7 and Σh ¼ Σj. Images were reconstructed by per-
forming 10 iterations of the reconstruction-classification
method (Fig. 7).

5 Discussion

5.1 Summary of Findings

We applied the proposed reconstruction-classification algorithm
to a 2-D numerical phantom with three tissues, a background,
and two perturbations (Fig. 3). The optical absorption was
recovered reliably within a small number of iterations, and
the scattering was recovered with sufficient accuracy after
approximately 10 iterations (Fig. 4). We compared the optical

Fig. 2 Class initialization example: (a) original image of μa to which we apply the segmentation; (b) result
of taking average image values over the segmented areas; (c) first column, histogram of occurrences of
values of μa in the portion of the image requiring segmentation—value with highest number of occur-
rences is μa h (indicated by a red cross); second column, probability density function with mean
ðμah; μ 0

shÞ and covariance Σh ; third column, labels identifying nodes with probability density higher
than tolerance value tolh ; each row corresponds to an iteration and a distinct class, so in this case, J ¼ 3.

Fig. 1 Reconstruction-classification algorithm outline.
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model with images obtained by the reconstruction-classification
method and by a traditional reconstruction-only (no regulariza-
tion) method (Fig. 5). We found that the reconstruction-classi-
fication method delivered superior image quality, particularly
with regards to the scattering parameter. We applied the
reconstruction-classification algorithm to a much larger 3-D
problem (Fig. 6) and observed similar results (Fig. 7) as in
the 2-D case.

5.2 Choice of Parameters

The parametric optical model and classification algorithm intro-
duce a number of parameters that require tuning by the user. In

addition to the regularization parameter, the parameters of the
Jeffreys prior Γ and ν and the initial guess of the class variances
Σj must be set before performing the classification. However,
their significance is fairly intuitive, and with experience of a cer-
tain type of problem, the choice of parameters becomes natural.
Visualizing the class covariance matrix Σj as an ellipse, chang-
ing the value of Γ varies its eccentricity, and changing ν varies
the length of its axes. Further, given that in the first iteration the
optical absorption is recovered with superior accuracy to the
scattering, it is preferable to initialize the variance of the former
to a smaller value than the latter, indicating greater confidence in
the imaging solution.

Fig. 3 Two-dimensional (2-D) model: (a) circular mesh and (b) absorbed energy for each illumination
pattern.

Fig. 4 2-D reconstruction-classification results at iteration 1 (first row), 5 (second row), and 10 (third row).
Reconstructed values of μa and μ 0

s (first and second columns), labels recovered for perturbation classes
(third and fourth columns), and scatter plot (fifth column).
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5.3 Initialization of the Class Means

The purpose of the means initialization scheme is to increase
automation of the method so that minimum user intervention
and no prior knowledge of the number of tissues or their optical
properties is required. The algorithm simply performs a segmen-
tation of the image, then takes averages over the segmented
areas to initialize the class properties (Fig. 1). Alternative seg-
mentation techniques could have been employed; however, the
advantage of the proposed approach is that it directly exploits

the mixture of Gaussians model to identify the tissues. Our
choice to investigate a node h with μa belonging to the bin
with a maximum number of occurrences leads to the back-
ground tissue being identified first, followed by the perturbation
tissues. The choice of the node index h could have been random-
ized so that tissues would be identified in random order. This
approach is equally valid; however, we found that in cases
where tissue values were close together (such as after a single
reconstruction-classification iteration), it was preferable to iden-
tify the largest classes first because the mean was estimated with

Fig. 5 2-D model and reconstruction: first column, model of μs and μ 0
s ; second column, reconstructed

values of μa and μ 0
s without multinomial prior; third column, reconstructed values of μa and μ 0

s with multi-
nomial prior.

Fig. 6 Three-dimensional (3-D) model: (a) numerical phantom and perturbation locations, (b) all illumi-
nation sources, (c) cross section of optical parameters used to simulate the data for z ¼ 0, (d) cross
section of absorbed energy for each illumination pattern.
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greater accuracy for the classes with a larger number of samples.
Further, for a given image and tolerance level, our choice
renders the result of the segmentation process unique and
reproducible.

5.4 Recovery of the Scattering

From the comparison with the reconstruction-only case with no
regularization (Fig. 5), it is evident that the introduction of the
parametric prior enables better recovery of the scattering. The
inconsistency between the quality of the recovered absorption
and scattering parameters in the nonregularized case is due to
the weaker dependence of the latter on the absorbed energy den-
sity with respect to the former. This results in the scattering gra-
dient being approximately an order of magnitude smaller than
the absorption gradient. Although the problem can be mitigated
by sphering the solution space, variations in the data due to the
scattering often fall below the noise floor. In the reconstruction-
classification case, typically the absorption is recovered with
good accuracy within a small number of iterations. Thus, the
absorption takes values very close to the class means (resulting
in small clusters), and the variance along the μa direction con-
verges to a small value. Given that the regularization term is
weighted by the inverse of the covariance matrix, the depend-
ence of the absorption gradient on the data becomes weaker at
each iteration, until its magnitude is comparable or smaller to

that of the scattering. In the iterations that follow, the descent
of the data term of the objective function is primarily due to
updates to the scattering, which converges to the correct values.

5.5 Computational Demands

Computational performance was found to be strongly dependent
on the problem size. In the 2-D case with 1331 nodes (Fig. 4),
the total reconstruction time (10 outer reconstruction-classifica-
tion iterations) using MATLAB on a 16-processor PC with
128 GB RAM was only 77 s. In the 3-D case with 27,084
nodes (Fig. 7), the total reconstruction time increased linearly
with the number of nodes and was approximately 3.7 h on
the same workstation. The increase in computation time was
mostly due to much longer processing times for the L-BFGS
algorithm in the reconstruction step.

5.6 Experimental Application

In experimental situations, prior information on tissue properties
may be held, such as knowledge of the characteristic optical
absorption and scattering spectra of chromophores of interest.
These may be obtained from the literature15 or gained through
tissue sample measurements. This information could be used in
one of two ways. First, a library of typical chromophores could
be used to initialize the class parameters instead of the proposed

Fig. 7 3-D reconstruction-classification results at iteration 1 (first row), 5 (second row), and 10 (third row).
Reconstructed values of μa and μ 0

s (first and second columns), labels recovered for perturbation classes
(third column), and scatter plot (fourth column).
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class means initialization method. The classification process
could then perform the function of correcting for uncertainty,
errors, or local variations in the real optical properties with
respect to the prior information. Alternatively, it could be
used to label the chromophores found by the segmentation proc-
ess and identify these as certain tissues such as, e.g., “oxygen-
ated blood” or “fat,” on the basis of the closeness of the
recovered means to the characteristic properties.

5.7 Additional Priors

In this study, we assumed independence between nodal values;
however, the mixture of Gaussian models could be used in con-
junction with a spatial prior. Knowledge of smoothness or spar-
sity properties of the solution could be employed to introduce a
homogeneous spatial regularizer such as first-order Tikhonov16

or total variation.7,17 Knowledge of structural information, such
as that provided by an alternative imaging method or anatomical
library, could be exploited by introducing a spatially varying
probability map for the optical properties.

6 Conclusions
In this paper, we proposed a method for performing image
reconstruction in QPAT. We introduced a parametric class
model for the optical parameters and implemented a minimiza-
tion-based reconstruction algorithm. We suggested an auto-
mated method by which to initialize the parameters of the
class model and proposed a classification algorithm by which
to progressively update and improve those parameters after
each reconstruction step. We demonstrated though 2-D and
3-D numerical examples that the reconstruction-classification
method allows for the simultaneous recovery of optical absorp-
tion and scattering. In particular, we found that this approach
delivered superior accuracy in the recovery of the scattering
with respect to traditional gradient-based reconstruction.
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