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Abstract. Mueller polarimetry is applied to study the samples of nails: natural (or reference) and irradiated to
2 Gy ionizing radiation dose. We measure the whole Mueller matrices of the samples as a function of the scatter-
ing angle at a wavelength of 632.8 nm. We apply depolarization analysis to measured Mueller matrices by
calculating the depolarization metrics [depolarization index, Q(M)-metric, first and second Lorenz indices,
Cloude and Lorenz entropy] to quantify separability of the different samples of nails under study based on
differences in their Mueller matrix. The results show that nail samples strongly depolarize the output light in
backscattering, and irradiation in all cases results in increasing of depolarization. Most sensitive among depo-
larization metrics are the Lorenz entropy and Q(M)-metric. © 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI:

10.1117/1.JBO.21.7.071108]
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1 Introduction
Development in nuclear technologies and industry resulted in
increasing number of radiation accidents, which usually are
accompanied by exposure of significant number of general
population to unpredictable ionizing radiation doses. Some
examples of such accidents are disasters at the Chernobyl
nuclear power plant in Ukraine (April 1986) and at the
Fukushima Nuclear Power Plant in Japan (March 2011). In
both accidents, hundreds of thousands of people were exposed
to unknown doses.

In order to provide the adequate medical assistance to poten-
tial sufferers from a radiation accident, it is necessary to estimate
their radiation doses using some dosimetric technique with some
appropriate materials. This is not a trivial task, and until now
there is no established dosimetric technique that could be
used for emergency dose reconstruction. Two main physical
methods are usually exploited, namely electron paramagnetic
resonance (EPR) and optically-stimulated luminescence (OSL)
techniques. They might be applied to some human tissues like
teeth and nails1–5 as well as to some materials/items which
could be carried by an individual during emergency exposure.
Materials potentially available for emergency dose reconstruc-
tion include different paper and plastic cards, banknotes, fabrics,
shoes, resistors, integrated circuits, and displays of mobile
phones.6–14 Despite significant progress achieved with some
materials using EPR and OSL techniques, there are too many
limitations with their possible practical use for fast estimation
of emergency doses, and search of new techniques and materials
that could be used for emergency dose reconstruction is still
an actual task.

In the present paper, we tested the Mueller polarimetry for
the possible application for emergency dose assessment using
the human nails. To that end, the complete Mueller matrices
for three sets of nail’s samples, reference, and irradiated, are
measured in visible (λ ¼ 632.8 nm). After that, the parameters
characterizing depolarization properties of the samples (depo-
larization metrics) have been calculated. Thereby, this study
presents results for the use of depolarization metrics extractable
from the experimental Mueller matrices to distinguish between
natural and irradiated human nails and determines which of
them are most sensitive for that.

In Sec. 2, we present a description of the Mueller experimen-
tal approach. Section 3 summarizes preparation features and
characteristics of samples studied. In Sec. 4, we briefly review
the parameters characterizing depolarization properties of a
sample. Results and discussion of our experiments are given in
Sec. 5.

2 Mueller Matrix Measurements
In polarimetry the most complete characterization of studied
object is attained by measurement of the Mueller matrix of stud-
ied object.15–18 At that, a light beam is characterized by the
Stokes vector I ¼ ð I Q U V ÞT.19 Its parameters present
the total intensity ðIÞ, linearly (Q and U) and circularly ðVÞ
polarized components. Scattering is described by the following
matrix equation20

EQ-TARGET;temp:intralink-;e001;326;151Iout ¼ MIinp; (1)

where Iinp and Iout are the Stokes vectors of input and output
(scattered) light; M is the Mueller matrix of studied object
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depending on wavelength, incident, and scattering directions
and properties of the object. The analysis of the depolarization
and anisotropy information contained in the Mueller matrix M
provides one with valuable information on structure and proper-
ties of examined objects.

The Mueller matrix polarimeter is composed of a polariza-
tion state generator (PSG) and polarization state analyzer
(PSA).20,21 The PSG generates the particular polarization states
of light impinging on the studied sample. The PSA measures the
full or certain of parameters of scattered light’s Stokes vector.
Both PSG and PSA consist of retarders and diattenuators that are
capable of analyzing the polarization state of the scattered beam.

For any PSG and PSA, the total flux measured by the
detector is

EQ-TARGET;temp:intralink-;e002;63;598g ¼ QML ¼
X4
i¼1

X4
j¼1

qimijlj; (2)

where L is the Stokes vector produced by PSG; M is the object
Mueller matrix; Q is the Stokes vector corresponding to the first
row of the Mueller matrix representing the PSA.

To measure the full Mueller matrix, N ¼ 16 flux measure-
ments, according to Eq. (2), are required. Representing the

Mueller matrix M as a 16 × 1 vector of the form ~M ¼
½m11 m12 m13 m14 · · · m43 m44 �T the polarimet-
ric measurement equation can be expressed as follows
EQ-TARGET;temp:intralink-;e003;63;456
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where G is the N × 1 vector, whose components are the fluxes
measured by detector;W is N × 16 general characteristic or data
reduction matrix with elements wN

ij ¼ qNi l
N
j .

If PSG and PSA are configured so that W is of rank sixteen,
then all sixteen Mueller matrix elements can be determined in
such a way

EQ-TARGET;temp:intralink-;e004;63;273

~M ¼ W−1G: (4)

Particular scheme of Mueller polarimeter used in this experi-
ment is shown in Fig. 1.

Light beam from a linearly polarized continuous-wave He–
Ne laser (1) passes through a polarization state generator PSG
consisting of polarizer (2) and two LC wave plates (3) with
phase shifts δ1, δ2 and azimuths α1, α2. The light is subsequently
scattered by a sample (4). Then scattered light passes through a
polarization state analyzer (PSA) consisting of rotatable crystal-
line wave plate (5) with phase shift δ3 and an analyzer (6) and is
measured by a detector (7), so that PSA is a complete Stokes
polarimeter.21,22 Polarizer (2) and analyzer (6) are fixed and
crossed relative to each other. The wave plates in PSG and
PSA are assembled by holders controlled from the computer.

Thus, the polarimeter, Fig. 1 realizes the so called time-
sequential measurement strategy.21,23 This allows considering
the parameters of vector G in Eq. (3) as parameters of the

Stokes vectors measured by PSA. In this case characteristic
matrix W in Eq. (3) takes a block-diagonal form
EQ-TARGET;temp:intralink-;e005;326;546

W16×16 ¼

0
BBB@

V 0 0 0

0 V 0 0

0 0 V 0

0 0 0 V

1
CCCA; (5)

with 4 × 4 block matrix of the form
EQ-TARGET;temp:intralink-;e006;326;456

V ¼

0
BBBB@

r11 r12 r13 r14
r21 r22 r23 r24
r31 r32 r33 r34
r41 r42 r43 r44

1
CCCCA; (6)

where rki is the i’th parameter of k’th Stokes vector, k ¼ 1;4,
generated by PSG.

In this experiment, we use the following set of optimal
polarizations minimizing the condition number of block matrix
Eq. (6)23

EQ-TARGET;temp:intralink-;e007;326;320V4×4 ¼

0
B@

1 1 0 0

1 −0.333 −0.816 0.471

1 −0.333 0 −0.943
1 −0.333 0.816 0.471

1
CA: (7)

3 Samples
Nails for this study were obtained from three volunteers,
denoted below as AL (a on the plots), F23 (b on the plots),
JOE (c on the plots). Nails were collected during routine
hygienic procedures and were stored at ambient conditions
between clipping and submitting to the research laboratory.

Large aliquots of the size approximately 3 × 3 mm2 were
cut from the originally collected nail clips for consecutive
exposure and measurement with a polarimetric technique.
Samples were exposed on a 250 mCi 90Sr∕90Y beta source
located at the Radiation Dosimetry Laboratory of Oklahoma
State University. The source was calibrated against a National
Institute of Standards and Technology secondary standard
60Co source in terms of absorbed doses to water using Luxel
Al2O3∶C OSL dosimeters. Samples were exposed at the dose
rate of 0.26 Gy∕s.

αoutαinp

tω

1

2

3

4

5

6

7

Fig. 1 Schematic overview of the experimental geometry to measure
the Mueller matrices.
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Immediately after irradiation, samples were sent to the
research laboratory in Kiev using an express mail service;
samples were tested at 5 days after exposure.

4 The Depolarization Metrics
In this Section, we review briefly the parameters used in this
experiment for characterization of the depolarization of the
samples under consideration—depolarization metrics. The
depolarization metrics provide a summary of the depolarizing
property of a sample via a single number that varies from
zero, thereby corresponding to a totally depolarized output
light, to a certain positive number corresponding to a totally
polarized output light. All intermediate values are associated
with partial polarization.

The most commonly used metric is the depolarization
index DIðMÞ proposed more than 20 years ago by Gil and
Bernabeu,24,25

EQ-TARGET;temp:intralink-;e008;63;564DIðMÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX4
i;j¼1

m2
ij −m2

11

vuut �� ffiffiffi
3

p
m11

�
: (8)

The depolarization index is bounded according to
0 ≤ DIðMÞ ≤ 1. The extreme values of DIðMÞ correspond to
the case of unpolarized and totally polarized output light,
respectively.

The so-called QðMÞ metrics is defined as follows26

EQ-TARGET;temp:intralink-;e009;63;452QðMÞ ¼
P

4
i¼2

P
4
j¼1 m

2
ijP

4
j¼1 m

2
1j

¼ 3½DIðMÞ�2 − ½DðMÞ�2
1þ ½DðMÞ�2 ; (9)

where DðMÞ ¼ ðm2
12 þm2

13 þm2
14Þ1∕2∕m11 is the diattenuation

parameter and 0 ≤ DðMÞ ≤ 1. The metric QðMÞ is bounded
according to 0 ≤ QðMÞ ≤ 3. Specifically, QðMÞ ¼ 0 corre-
sponds to a totally depolarizing medium; 0 < QðMÞ < 1
describes a partially depolarizing medium; 1 ≤ QðMÞ < 3
represents a partially depolarizing medium if, in addition,
0 < DIðMÞ < 1; otherwise, it represents a depolarizing diattenu-
ating medium; finally, QðMÞ ¼ 3 for a nondepolarizing non-
diattenuating medium.

Depolarization metrics named first and second Lorentz
depolarization indices

EQ-TARGET;temp:intralink-;e010;63;281L1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðNÞ − ρmax

3ρmax

s
; (10)

EQ-TARGET;temp:intralink-;e011;63;231L2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4trðN2Þ − tr2ðNÞ

3tr2ðNÞ

s
; (11)

are proposed in Ref. 27. Here

EQ-TARGET;temp:intralink-;e012;63;174N ¼ GMTGM; (12)

and
EQ-TARGET;temp:intralink-;e013;63;131

G ¼

0
BBB@

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

1
CCCA; (13)

is the Minkowski metric; ρmax is the maximum eigenvalue of N.
Metric L1 is equal to 1 for a nondepolarizingM and to less than
1, otherwise; it will be equal to zero for the ideal depolarizer
MID ¼ diagð 1 0 0 0 Þ. At the same time, the metric L2 ¼
0 for a nondepolarizingM, L2 ¼ 1 forMID, and take intermedi-
ate values, otherwise.

Another metric characterizing depolarization properties of a
sample is deduced basing on the coherency matrix suggested by
Cloude in Refs. 28 and 29 and extensively employed in optical
polarimetry and remote sensing.30–37 The Cloude coherency
matrix J is derived from the corresponding arbitrary Mueller
matrix as follows:
EQ-TARGET;temp:intralink-;e014;326;620

j11 ¼ 1∕4ðm11 þm22 þm33 þm44Þ;
j22 ¼ 1∕4ðm11 þm22 −m33 −m44Þ;
j33 ¼ 1∕4ðm11 −m22 þm33 −m44Þ;
j44 ¼ 1∕4ðm11 −m22 −m33 þm44Þ;
j14 ¼ 1∕4ðm14 − im23 þ im32 þm41Þ;
j23 ¼ 1∕4ðim14 þm23 þm32 − im41Þ;
j32 ¼ 1∕4ð−im14 þm23 þm32 þ im41Þ;
j41 ¼ 1∕4ðm14 þ im23 − im32 þm41Þ;
j12 ¼ 1∕4ðm12 þm21 − im34 þ im43Þ;
j21 ¼ 1∕4ðm12 þm21 þ im34 − im43Þ;
j34 ¼ 1∕4ðim12 − im21 þm34 þm43Þ;
j43 ¼ 1∕4ð−im12 þ im21 þm34 þm43Þ;
j13 ¼ 1∕4ðm13 þm31 þ im24 − im42Þ;
j31 ¼ 1∕4ðm13 þm31 − im24 þ im42Þ;
j24 ¼ 1∕4ð−im13 þ im31 þm24 þm42Þ;
j42 ¼ 1∕4ðim13 − im31 þm24 þm42Þ: (14)

It can be seen that coherency matrix J is positive semidefinite
Hermitian and, hence, has always four real eigenvalues. This
yields a requirement for the Mueller matrix to be physically real-
izable: the coherency matrix J should have all non-negative
eigenvalues.28 For the average characterization of depolarization
for given Mueller matrix the following metric, called Cloude
entropy, can be used

EQ-TARGET;temp:intralink-;e015;326;255H ¼
X4
i¼1

−Pi log4 Pi; (15)

where

EQ-TARGET;temp:intralink-;e016;326;198Pi ¼
λiP
j
λj
; (16)

and λi are the eigenvalues of coherency matrix J Eq. (14).
For pure scattering without depolarization, H ¼ 0 and

λ1 ≠ 0, λi≠1 ¼ 0. For totally depolarizing scatterers, H ¼ 1.
When H < 0.5 and H > 0.5, one have weakly and strongly
depolarizing cases, respectively.

The parameter analogues to the Cloude entropy H—Lorenz
entropy HL—can also be derived using the eigenvalues ρi of
matrix N Eq. (12)27
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EQ-TARGET;temp:intralink-;e017;63;752HL ¼
X4
i¼1

−ρi log4 ρi. (17)

As it results from Eq. (17) the quantity HL ¼ 1 for a non-
depolarizing M and HL < 1, otherwise.

Given eigenvalues λi of coherency matrix J, we have for
initial Mueller matrix

EQ-TARGET;temp:intralink-;e018;63;667M ¼
X4
k¼1

λkMk: (18)

Here Mk are the pure Mueller matrices derivable from corre-
sponding Jones matrices.17,20,38

The Jones matrix, T, in turn, is obtained in the following
manner
EQ-TARGET;temp:intralink-;e019;63;573

tðkÞ11 ¼ ΨðkÞ
1 þ ΨðkÞ

2 ; tðkÞ12 ¼ ΨðkÞ
3 − iΨðkÞ

4

tðkÞ21 ¼ ΨðkÞ
3 þ iΨðkÞ

4 ; tðkÞ22 ¼ ΨðkÞ
1 − ΨðkÞ

2 ; (19)

where ΨðkÞ ¼ ðΨ1 Ψ2 Ψ3 Ψ4 ÞTk is k’th eigenvector of
coherence matrix J.

Thus, the substance of the Cloude coherency matrix concept,
which, in essence, is an additive matrix model of arbitrary
depolarizing Mueller matrix, is the representation of the initial
depolarizing Mueller matrix as a weighted sum of four pure
Mueller matrices, see Eq. (18).

Evidently, the depolarization metrics presented above do not
exhaust all known metrics characterizing the depolarization
properties of a sample.39 We confine ourselves in this Section
only to the depolarization metrics, which are directly related
to the Mueller matrix elements and need no scanning of whole
Poincare sphere of input polarizations. These depolarization
metrics are used in what follows.

5 Results and Discussion
Using the experimental setup described in Sec. 2 we measure
the complete Mueller matrices of three sets of human nails and
calculate the values of all depolarization metrics discussed in
Sec. 4.
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Fig. 2 Mueller matrix elements for nail samples: (a) AL, (b) F23, and (c) JOE.
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In the experiment, the laser beam (15 mW) was widened
up to 2 mm in diameter and directed to the external nail’s
surface in order to simulate the possible “in vivo” application
of the polarimetric technique. Polarimetric properties of
a reflected (from a nail surface) light were examined, which
also attempted to follow the possible in vivo dose recon-
struction protocol.

Prior to sample Mueller matrix measurement, the polarim-
eter was calibrated to obtain experimentally the optimum
characteristic matrix Eq. (7). Figure 2 shows the measured
Mueller matrix elements as functions of scattering angle for
all samples.

Each point presented in the figures below is a result of aver-
aging over 500 realizations of the single measurements. Except
for m11 all matrix elements are normalized to m11, so that we
consider mij∕m11, with i, j ¼ 1;4 aside from i ¼ j ¼ 1.

There are no error bars shown in Fig. 2 and in subsequent
figures because experimentally estimated values of the standard
deviations are comparable with the symbols plotted and below
2%. To avoid potential calculation problems we investigated the
reliability of the measured scattering matrices by checking that
all of them satisfy the Cloude test 28 within the experimental
errors at each scattering angle. As it can be seen in the eight
matrix elements m13, m14, m23, m24, m31, m32, m41 and m42

are zero within the experimental errors over the entire scattering
angle range and, thus, the Mueller matrix has a block-diagonal
structure. This structure of the Mueller matrix is characteristic
for many scattering problems.40,41

From Fig. 2, we can also deduce that most sensitive matrix
elements for given samples characterization are diagonal ele-
ments, i.e., m11, m22, m33, and m44. However, the dosage sen-
sitivity of matrix elements is different for different sets of nails.
The same is for ranges of scattering angles characterized by
maximum sensitivity. For set JOE, this is almost entire range
of scattering angles, while for sets AL and F23 they are approx-
imately 18 deg–27 deg and 18 deg–35 deg, respectively. The
phase function m11 is almost unchanged in the whole range
of scattering angles for sets AL and JOE and manifests sensi-
tivity for F23 in 18 deg–35 deg range of scattering angles.

Further, basing on the results of Mueller matrix measure-
ments we examine the sensitivity of the depolarization metrics
considered in Sec. 4.

Figures 3 and 4 show the behavior of depolarization index
DIðMÞ and QðMÞ-metric with altering the scattering angle.
The similar dependences for first L1 and second L2 Lorentz
depolarization indices are presented in Fig. 5 and, at last, the
same for entropies H and HL is in Fig. 6.

As it can be seen all depolarization metrics show that nail
samples depolarize strongly the output light in backscattering
geometry (Fig. 1) and irradiation in all cases results in increasing
of depolarization. This is presumably explained by strong
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Fig. 3 Dependence of depolarization index DIðMÞ on scattering
angle: (a) AL, (b) F23, and (c) JOE.
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Fig. 4 Dependence of QðMÞ-metric on scattering angle: (a) AL,
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Fig. 5 Dependence of first L1 and second L2 Lorentz depolarization
indices on scattering angle: (a) AL, (b) F23, and (c) JOE.
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domination of volume scattering for scattering angles especially
in the range 180 − 300. At the same time there exists an excep-
tion that is Lorenz entropy HL. HL shows that for small scatter-
ing angles 180 − 250 samples of sets F23 and JOE depolarize
weakly output light. However, the last one is not quite confirmed
by the dependence of polarization degree on input polarization;
see Fig. 7.

Depolarization metrics demonstrate a different ability to
sample characterization with respect to the level of exposure
dose. Evidently, most promising identifiers between reference
and irradiated samples of nails are QðMÞ-metric (Fig. 4) and
entropy HL (Fig. 6).

Thus, the patterns of measured matrix elements and the
results of subsequent interpretation of the experimental
Mueller matrices show that Mueller polarimetry in visible ena-
bles to identify the reference and irradiated (in this experiment,
this makes up 2 Gy) samples of nails. At that, it is important to
note (see Fig. 7), that for better reliability of sample state dis-
tinction, one needs to examine all existing depolarization met-
rics jointly.

The reason why irradiated and nonirradiated samples of nails
demonstrate different depolarizing ability cannot be determined
within a framework of the current study. However, the following
speculation may be proposed now. It is known from many pub-
lications (e.g., Refs. 2 and 42) that many different paramagnetic
radicals are generated in nail tissue as a result of exposure to
ionizing radiation. If these radicals have depolarizing properties
different from those of original (precursor) molecules, this might
be a reason of observed effects. Anyway, more experiments are
required to understand this phenomenon.

All results accumulated up to date were obtained with only
three samples (from three individuals). The further study will
include the examination how variability in nails age, gender,
and so on may influence the observed effects.
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