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Abstract. Digital image processing is at the base of everyday applications aiding humans in
several fields, such as underwater monitoring, analysis of cultural heritage drawings, and medi-
cal imaging for computer-aided diagnosis. The starting point of all such application regards the
image enhancement step. A desirable image enhancement step should simultaneously standard-
ize the illumination in the image set, possibly removing bad or not-uniform illumination effects,
and reveal all hidden details. In 2002, a successful perceptual image enhancement model, the
automatic color equalization (ACE) algorithm, was proposed, which mimics the color and con-
trast adjustment of the human visual system (HVS). Given its widespread usage, its correlation
with the HVS, and since it is easily implementable, we propose a scoping review to identify and
classify the available evidence on ACE, starting from the papers citing the two funding papers on
the algorithm. The aim of this work is the identification of what extent and in which ways ACE
may have influenced the research in the color imaging field. Thanks to an accurate process of
papers tagging, classification, and validation, we provide an overview of the main application
domains in which ACE was successfully used and of the different ways in which this algorithm
was implemented, modified, used, or compared. © 2021 SPIE and IS&T [DOI: 10.1117/1.JEI.30.2
.020901]
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1 Introduction

The starting point of this scoping review is the automatic color equalization (ACE) algorithm.1–3

This algorithm is part of the spatial color algorithms (SCA) family,4 a group of algorithms that
mimic the human visual system (HVS), enhancing contrast and colors according to the spatial
distribution of pixels values in the scene.1 The SCAs are mainly based on the visual mechanism
for which color sensation depends on the spatial arrangement of the stimuli in the scene. This
mechanism has been well studied and employed in many fields (e.g., art, design, psychology,
and optometry), where it is well known that identical color stimuli can originate different color
sensations according to their distribution in the image. An example of this phenomenon is the
visual illusions (e.g., simultaneous contrast). In general, SCA enhancement is based on a quali-
tative estimate of the appearance of each point according to the influence of the surrounding
spatial arrangement of the scene. This principle is derived from Retinex,5,6 the first computa-
tional model of color sensation, founding member of the SCA family from which ACE derives.2

ACE is easily understandable, implementable, and applicable and allows the user to enhance
the image depending on its content and on pixels spatial arrangements, thus simulating some
of the main behaviors of the HVS. Nevertheless, ACE computational costs areOðn2Þ, where n is
the number of pixels in the image, thus the high computational costs are the main disadvantage
of ACE. As presented in the next sections, speed-up methods have been devised to overcome
this limit.
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In this research, we show that since its presentation ACE has been widely used, mathemati-
cally formalized, and even reimplemented for optimizing its computational performance so that
it is currently used as one of the preprocessing steps of different applications in disparate fields
and image enhancement workflows. The technical reasons determining the success of this image
enhancement algorithm may be quite different, e.g., the visual quality of the output images, the
normalizing effect on images illumination, or its easy implementation (see Fig. 1). Due to ACE
correlation with the HVS, the output images are enhanced in contrast and colors as observers
would expect/like to see them and are therefore usually preferred compared to the original.9–11

Due to ACE properties, this algorithm and this scoping review can be of interest to researchers
addressing the problem of color constancy both for machine vision and human vision applica-
tions. Moreover, when a dataset where images characterized by different illumination conditions
are treated, ACE, like other SCAs,12 has the useful property of normalizing the effects of the
illumination, therefore producing a more uniform dataset. An overview of the different imple-
mentations of ACE is presented in Sec. 4.2.2, anyway different implementations are also avail-
able online (among the different ACE implementations, the following one is available in Python
language).

Another advantage of ACE, which makes this algorithm widely usable and applicable, is that
it does not require user supervision, statistic characterization, a-priori information on the scene,
nor data preparation. Moreover, ACE presents just a single parameter to tune [r in Eq. (1)], which
is easily understandable and manageable, so that also nonexpert users can apply and use this
algorithm to achieve the desired image enhancements.

In this scoping review, we selected ACE among the whole family of Retinex-based algo-
rithms, because it has a medium-high citation score, it is easily implementable, and correlated
with the HVS. For these reasons, from the study of ACE applications and roles, we can under-
stand and define the main needs and research directions in the SCAs field, to define new trends
and directions to improve the research on spatial models and algorithms able to deal with com-
plex scenes in a global and local approaches. More specifically, in this work, we are interested in
the identification and analysis of the application domain and roles of ACE and in the mapping of
these characteristics. To this aim, we have collected and analyzed a wide set of papers using it.

Following the indications reported by Munn et al.,13 a scope review has been considered
more appropriate at this purpose, instead of a systematic review, since we do not aim at produce
a critical answer to specific queries but to provide an overview of evidence. Thus, as suggested
by Peters et al.,14 an assessment of methodological limitations or biases of the papers included in
the study is not performed, and we focus on identifying and examining the applications and roles
of ACE in the many researches using and citing it. The goal of this scoping review is to better
understand the motivations behind the many different ACE applications and roles, to define the
main needs, and provide the scientific community with new research directions.

The research methodology of this study is presented in Sec. 3, and in Sec. 4 the results are
discussed.

Fig. 1 Example of ACE application on images from the dataset Ex-Dark7 and NPRgeneral.8
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2 Automatic Color Equalization

ACE was presented for the first time in 2002 at the Conference on Colour in Graphics, Imaging,
and Vision3 and published in 2003 by Rizzi et al.1 SCA family of algorithms tries to simulate
some characteristics of the HVS enhancing images with a global and local approach, from the
idea that color sensation derives from the spatial ratios of the reflected light intensity in specific
wavelengths bands computed between adjacent areas of the image. One of the main character-
istics of ACE1 is the integration of local and global gray world (GW) and white patch (WP)
approaches. The local WP accounts for color adjustment while the GWaccounts for an automatic
local adjustment of average lightness and contrast.

Like all SCA algortihms, ACE is performed in two stages. In the first stage, the chromatic and
spatial adjustment produces an output image, in which every pixel is recomputed due to the
image content. In the second stage, the use of image dynamic range is maximized, by normal-
izing the white at a global level.

ACE works by comparing every pixel pt in the image I to every other pixel independently
in the RGB channels and summing all the difference to compute the final value:

EQ-TARGET;temp:intralink-;e001;116;549pnew ¼ 1

kt

X
pj∈I;pj≠pt

rðpt − pjÞdðt; jÞ; (1)

EQ-TARGET;temp:intralink-;e002;116;488kt ¼
X

pj∈I;pj≠pt

dðt; jÞ: (2)

Before the sum, each difference is modified by a nonlinear function rð·Þ and weighted by dð·Þ,
the inverse of the Euclidean distance among the pixels pt and pj. The normalizing factor kt is
used to avoid border effect (i.e., overamplifications of local differences along the edges in the
image content). The factor rð·Þ is the truncated gain function:

EQ-TARGET;temp:intralink-;e003;116;415rðpt − pjÞ ¼

8><
>:

−1 if ðpt − pjÞ ≤ −thr
ðpt−pjÞ

thr if − thr < ðpt − pjÞ < thr
1 if ðpt − pjÞ ≥ thr

: (3)

This last function is a nonlinear amplification of the normalized difference between pixel values,
responsible of the final pixel changes. The final contrast level depends on the slope value of rð·Þ;
the higher the slope, the higher the contrast.

A comparison and first evaluation of the performance of the two main SCA, Retinex and
ACE, is presented by Rizzi et al.2 In this second paper, the ACE algorithm is presented under
a different light, and its computational model is compared with Retinex, to underline their
peculiar characteristics and promote a more specific and aware use of those two algorithms.
The two algorithms present similar properties of global and local enhancement for what concerns
lightness, color constancy, and dynamic range stretching, and when applied to visual illusions
(such as images of simultaneous contrast) both compute visual appearance presenting the same
values of hue, but different brightness and saturation (see Ref. 2). Beside the steps of input and
output data calibrations,4 the main difference between ACE and Retinex is that Retinex is a WP
algorithm, whereas ACE integrates a GQ compensation mechanism.2

In this paper, Refs. 1 and 2 will be considered as the first two papers that presented the ACE
algorithm and promoted its performance among the algorithms of the Retinex family.

3 Methodology

For this scoping review study, we partially applied the guidelines described in Refs. 13 and 15.
Scoping studies follow five main stages:15 research question identification, relevant studies iden-
tification, study selection, data charting, and results discussion. Following the suggested steps
of scoping review, this study was structured in seven different phases:

• Research question definition;
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• Relevant studies identification;
• Papers selection;
• Tagging;
• Classification;
• Validation;
• Analysis and discussion.

Main characteristic of this work is that, after the research question definition, we identified the
available evidence searching for works citing the two founding papers on ACE algorithm,
described in Sec. 2.

3.1 Research Question Definition

As introduced in Sec. 1, aim of this scoping review is to better understand the motivations of the
many different ACE applications and roles. At this scope, this study is aimed at finding answers
to a specific research question: “After almost 20 years from its first publication, to what extent
and in which ways the ACE algorithm may have influenced the scientific research in the color
imaging field?” We considered two dimensions for organizing this study:

• (D1) Application domains: in case of practical use of ACE algorithm, the domains in which
the method has been applied have been considered for classifying the citing works.

• (D2) Roles: we classified the citing works considering the role the ACE paper(s) had in the
described studies.

3.2 Relevant Studies Identification

As starting point of our study, we selected two of the fundamental papers of ACE that have been
described in Sec. 2:

• Paper A: Rizzi et al. (Ref. 1);
• Paper B: Rizzi et al. (Ref. 2).

To find answers to our research question, we searched for all papers citing paper A and/or
paper B. To do so, we decided to interrogate both Google Scholar and Scopus.

For searching the citing papers on Google Scholar, we used Publish or Perish, an application
that retrieves and analyzes academic citations (Harzing’s Publish or Perish16). One of its features
allows one to query Google Scholar for a specific paper and to also search for the works citing it.
For paper search on Scopus, we first used Publish or Perish feature as described above, and
we retrieved all citing works on Scopus website.

We repeated these two steps for both paper A and paper B, and we combined the results into
one comprehensive spreadsheet. The search was performed on November 22, 2019, and we did
not specify a time range, so the upper date range limit coincides with this date. The search activ-
ity provided 826 results. For each paper resulted in the search phase, we filled in a line in the
spreadsheet, completing all columns detailed in Table 1.

3.3 Paper Selection

In this phase, we defined five exclusion criteria that we used to decide whether a paper was to be
excluded or included in the study:

1. Language: we excluded all papers that are written in languages different from English and
Italian (this choice is due to the authors’ native language).

2. Type: we did not include in the study BSc and MSc theses, books and monographs,
invited talk papers, papers from repositories and archives (those only available on ArXiv,
ResearchGate, or institutional archives), technical reports, project deliverables, white
papers, and other online content that are not scientific peer-reviewed papers (such as blog
posts).
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3. Duplicates: if a paper resulted both in search results in Scopus and Google Scholar, we
excluded the less-complete result.

4. Multiple citations: if a paper cited both reference papers we excluded one of the two.
5. Errors: we excluded those papers that appeared in the results but did not cite the refer-

ence papers or those that listed them in the references list but did not cite them in
the text.

At the end of this phase, once the exclusion criteria were applied, the papers included in the study
were 298 (the excluded were therefore 528). The included papers are listed in Table 2.

3.4 Tagging

We divided the 298 papers into three sets that were assigned to each of the three researchers (i.e.,
three of the paper’s authors) that actively performed the study. During this phase, the researchers
identified the papers written by at least one of the authors of the reference papers: Daniele
Marini, Carlo Gatta, and Alessandro Rizzi. Those papers have been tagged as self-citations.
Out of 298 papers, only 63 were self-citations (21.14%).

A graphical representation of the distribution of papers according to their type and consid-
ering both self-citation papers and papers written by other authors is shown in Fig. 2.

Moreover, Fig. 3 shows the distribution of the papers over the years.
We also performed an analysis to investigate where ACE is more diffused and in what sector

it has been used the most (academy or industry). To do so, we considered the affiliation and
the relative country of the first author (or the corresponding one). As shown in Fig. 4, China
is the country with the highest number of papers (44), followed by Spain (17), France (21),

Table 1 Columns of the spreadsheet used for the study.

Column Description

ID Each paper was assigned with a unique identifier used to identify it in the discussion
among the researchers

Title Complete title of the paper

Author List of paper’s authors

Year Year of publication of the paper

Source Name of the source (e.g., journal title in case of a journal article, book title in case of
a book chapter, name of the conference in case of a paper included in proceedings,
nothing in case of PhD dissertation)

Reference Complete reference of the paper

ACE paper Indication of which of the reference papers is cited (i.e., A or B)

Scholar query Checked if the paper appeared in results of the query on Google Scholar

Scopus query Checked if the paper appeared in results of the query on Scopus

Citations Number of citations of the paper

Type Types of paper (i.e., journal, chapter, proceedings, and PhD dissertation)

Included Checked if the paper was included in the study

Self-citation Checked if one or more of the paper’s authors are also authors of paper A and
paper B

App domain The domain of application described in the paper

Roles Used to describe why paper A and/or paper B were cited (i.e., use of ACE, comparison
of methods, implementation of ACE, modification of ACE, state of the art/survey,
formalization of ACE)
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United States (18), and Italy (17). As to the sector, out of the 235 papers that are not self-citation
papers, only 8 are published by private companies; the other 227 are all written by academics.
The eight industry papers have been published by researchers/practitioners in United states (2),
Russia (2), Brazil (1), France (1), Germany (1), and Italy (1).

Fig. 2 Distribution of the papers according to their type.

Table 2 Table of the papers included in the literature review.

Year Journal Proceedings PhD thesis Chapter

2003 17 18 to 21 — —

2004 — 22 to 25 — —

2005 26,27 28 to 34 — —

2006 35 to 38 39 to 49 — —

2007 50 to 58 4, 10, 59 to 66 67, 68 —

2008 69 to 72 73 to 78 — —

2009 79 to 84 85 to 100 101 —

2010 102 to 107 108 to 116 — —

2011 117 to 124 125 to 133 — —

2012 134 to 141 142 to 146 147 148

2013 149 to 155 156 to 164 165, 166 —

2014 167 to 181 182 to 186 — 187

2015 188 to 207 192, 208 to 214 215, 216 217 to 220

2016 221 to 236 237 to 245 — 246

2017 9, 247 to 264 265 to 267 268, 269 270

2018 271 to 287 238, 288 to 294 295, 296 —

2019 297 to 305 306 to 310 — 311
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3.5 Classification

Keeping the same assignment done for the tagging phase, the researchers independently ana-
lyzed and classified their set of papers by completing the other columns in the spreadsheet:

• Reference: the reference to the paper, in BibTeX format
• Application domain: this column is linked to the second dimension of this study (D1:

application domains). Each paper was assigned to an application domain. The list of
domains was finalized a posteriori, because the selection of its items was guided by the
individual classifications of the researchers.

• Roles: this column is linked to the first of the two dimensions used for organizing this
study (D2: roles). We classified each paper selecting one of the following values:

• Comparison;
• Formalization;
• Implementation;
• Modification;
• State of the art/survey;
• Use.

Fig. 4 Geographical distribution of the papers (the country of the institution of the first or the cor-
responding author has been considered).

Fig. 3 Distribution of papers over the years.
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3.6 Validation, Analysis, and Discussion

For validating the classification done in the previous phase, the researchers exchanged their
subset among them (researcher A validated researcher B, researcher C validated researcher
A, and researcher B validated researcher C).

Finally, the researchers met to analyze and discuss the results of the study and to organize
them for the preparation of this paper.

4 Results

4.1 D1: Application Domains

The analysis of the papers pointed out that only a limited number of papers are associated with
a specific application domain: 84 out of 298 (28.19%).

The distribution of the 84 papers according to the application domain they describe is
illustrated in Table 3. The first column lists all the application domains identified during the
study while the second and the third columns show the number of papers published by the same
authors of paper A and paper B (32 papers, 38.10%) and the ones published by other authors
(52 papers, 61.90%), respectively.

Table 3 Application domains identified during the study and distribu-
tion of the papers according to this classification.

Application domain Self-citation papers Other authors

Advertising posters 1 0

Art 0 2

Astrophotography 3 0

Biology 0 1

Color 2 1

Cultural heritage 3 1

Fish behavior monitoring 0 1

High dynamic range 1 0

Image enhancement 2 19

Image fusion 0 1

Image quality 2 3

Interfaces 3 0

Medicine 0 3

Movies 10 2

Printing 1 0

Psychophysical studies 2 0

Steel bridges 0 1

Stereo images 1 0

Underwater imaging 0 12

Virtual reality 1 0
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Focusing on the paper written by other authors, it is quite clear that “image enhancement”
and “underwater imaging” are the most diffused application domains in which ACE algorithm
has been used with 19 and 12 papers, respectively. In what follows, all the 52 papers will be
briefly presented and discussed from the application of ACE in the specific application
domains.

4.1.1 Movies and film restoration

In Ref. 271, the process of digitization, color enhancement, and digital restoration of a specific
type of movies, the reversal films, is illustrated. Reversal films produce a positive image on
a transparent celluloid base, with a low cost approach that has been very popular in the
20th century. In the paper, the authors faced specifically one of the main degradation phenomena
that affects the reversal film, due to aging process: color dye fading. In Ref. 125, the authors
discussed the vulnerability of motion pictures archives, especially the problems related to
distortions, such as color fading.

4.1.2 Cultural heritage

As an example of cultural heritage preservation and restoration, Ref. 142 focuses on a collection
of old colored postcards from the 19th century. This particular kind of document is made of a
type of paper that tends to become brown and yellow with the passing of time. Moreover, the
pigments of the postcards become faded and also other problems may occur, such as humidity
or fungi.

4.1.3 Art

ACE algorithm, in Ref. 39, is used for a nonphotorealistic image rendering. In this work, Lam
et al. aim at creating an image processing system where the output image that looks like the input
but with an artistic twist. In this application, ACE is used to enhance dull colors into vivid ones
for cartoon- or comics-like renderings. In the art application domain, the authors of Ref. 40
presented a study made on nonphotorealistic rendering, a discipline that aims at translating
photographs into paintings simulating different techniques and media.

4.1.4 Underwater monitoring

Another domain in which ACE has been considered is the one related to the assessment of secu-
rity and quality of drinking water by the observation of fish behavior. This approach, described in
Ref. 221, is based on the monitoring of group of fish put in fish tanks in which water flows in
a continuous manner. The behavior of the fish (erratic or even death) is used as indicator of
presence of toxins in the water. Instead of monitoring this process, all day long, in a manual
way, video surveillance and computer vision techniques are adopted.

4.1.5 Biology

Another application domain that is related to fish is the one in which biologists work for auto-
matic recognition of coastal fish; specifically, in Ref. 126, the authors describe their work in
Gaoquiao district of Zhanjiang, China, where the automatic identification of fish is made difficult
by the water condition (the underwater serious noise, strong, and nonuniform color cast, etc.).

4.1.6 Color

Tateyama et al. in Ref. 288 describe a new color enhancement technology, which aims at
avoiding color saturation for images displayed on big LED screens or on digitally controllable
decorative LED illuminations. In this work, ACE algorithm is used to estimate the wider LED
color gamut, in fact this algorithm allows to enlarge the color difference while moving all the
input colors inside the destination gamut.
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4.1.7 Medicine

In Refs. 85, 86, and 117, an interesting research work on the analysis of dermoscopic skin lesion
images is presented. The precise automatic analysis of lesion borders a very critical task in medi-
cine. The main problems related with poor contrast and lack of color calibration are successfully
solved using ACE.

4.1.8 Image enhancement

Morel et al.167 presented a high pass filter method, which eliminates the effect of nonuniform
illumination, preserves image details, and enhances the contrast. In this work, authors compare
the proposed method with more complex methods, ACE among them. In Ref. 108, Islam and
Farup proposed and analyzed several methods to enhance the output of SCA to preserve the non-
neutral properties of the original image along with the enhancement. The results of this paper are
promising, also if authors underline the low running time and the possibility to introduce some
distortion in the output. In Ref. 41, Chambah presented two methods for correcting nonuniform
color casts in images: ACE and progressive hybrid method. In this paper, ACE gives the best
results due to its adaptation to different color casts and because it is unsupervised. Lisani in
Ref. 289 presented a local image enhancement technique based on a logarithmic mapping
adapted on the luminance of each pixel neighborhood. This new technique is inspired by
ACE, which is used to make comparisons. In this paper, authors add value mainly to the ability
of ACE to adapt to widely varying light conditions. This characteristic inspired also a fuzzy
logic-based algorithm, presented in Ref. 87. Here, authors developed a technique to deweather
fog-degraded images and use an algorithm similar to ACE in the color correction step. In Ref. 79,
Palma-Amestoy et al. devised a set of basic requirements to be fulfilled by models, to be
considered “perceptually based.” Due to the translation of human color vision in mathematical
assumptions, it was possible for the author to analyze algorithms such as Retinex and ACE.
In this paper, authors found that those algorithms effectively enhance details and remove color
cast without introducing noise. Furthermore, authors provided processing to avoid noise ampli-
fication in extremely dark images.

A color image enhancement method, which applies a weighted multiscale compensation
based on the GW assumption, is presented in Ref. 247. ACE algorithm is used to make com-
parison with the proposed algorithm, due to its ability in preserving color constancy. Results
show that images enhanced through ACE and the proposed method have low color differences,
but the results obtained using ACE are brighter than those using the second method. A similar
work was described by Choudhury and Medioni.102 Also in this paper, authors developed an
algorithm of color enhancement focused on color constancy. This algorithm has the main char-
acteristic to estimate the illumination separating it from the reflectance component in the image.
In this work, the new algorithm is compared statistically and subjectively with ACE and other
algorithms of the Retinex family.

Wang et al.168 describe a variational Bayesian method for Retinex (named VBR), which aims
at simulating and interpreting how the visual system perceives colors. In the paper, the VBR
algorithm was compared with some Retinex and some non-Retinex method, ACE among them.
In Ref. 182, authors try to give an answer to the question “What is the right center/surround for
Retinex?” To answer this question, authors analyze the formal properties of the center/surround
versions of Retinex. From this study, ACE was found to be the best Retinex method considering
the conditions imposed in this study.

An algorithm to enhance and denoise low-light images is presented in Ref. 127. The main
characteristic of this method is that it uses different color spaces to achieve different enhance-
ments. Results show that the color preservation framework used by the algorithm is satisfactory
and can generate higher contrast and sharpness in comparison to ACE and other image enhance-
ment methods. Also in Refs. 80 and 88, Han and Sohn deal with the problem of restoring images
taken under arbitrary light conditions. In Ref. 80, an automatic framework: illumination and color
compensation algorithm using mean shift and the sigma filter (ICCMS) is presented. In this paper,
the results show that all the compared algorithms, ACE among them, increase local contrast
and visual perception, but ICCMS performed a better illumination and color enhancement in
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underexposed regions of the image. Due to the satisfactory results, in Ref. 88 authors develop a
framework inspired by ICCMS color restoration and by the free region-of-interest illumination
compensation for digital cameras with touch screen. This method named HRICR allows to restore
distorted images taken under arbitrary light conditions. Han and Sohn,89 present another frame-
work to restore illumination and color fidelity in digital camera, but unlike the previous method,
this latter one is based on a human visual perception model. The proposed method was compared
to other algorithms of shadow correction such as ACE. Results show that the proposed method
enhances illumination and color in underexposed image regions. Nevertheless in some images it
produces an unwanted halo effect with distortions of colors and noise amplification.

Another algorithm to automatically adjust luminance in under- and overexposed images is
presented in Ref. 109. This approach is based on a recursive local intensity adaptation defined for
each pixel through a nonlinear recursive framework. In this work, the proposed method is mutu-
ally compared with different algorithms, and if on some images ACE gives results comparable to
the new method, in some cases it introduces color alterations. A method based on histogram
equalization is presented in Ref. 222. This method reflects the characteristics of the global histo-
gram equalization method locally to avoid artifacts and produce a global and local contrasts
enhancement. The new method is compared with color constancy algorithms such as ACE, and
an objective and subjective assessments is provided in the results. In Ref. 149, an improvement
of random spray Retinex (RSR) is proposed: the light random sprays retinex (LRSR). The main
purpose of the authors is to reduce the noise introduced by RSR and computation costs. In this
paper, LRSR is compared with ACE and other algorithms that apply local illuminant correction.
Nevertheless all the tested methods differed significantly among them in perceptual difference
and computational costs, LRSR gives very similar results to RSR reducing significantly the
computation time. The same authors, in Ref. 188, propose a new algorithm, named smart light
random memory sprays Retinex (SLRMSR), which is an improvement of LRSR. From the com-
parison with other image enhancement methods, it was seen that SLRMSR is slightly outper-
formed by ACE in brightness adjustment and outperforms all other methods. In conclusion, the
results demonstrated that SLRMSR is a good candidate for real-time applications due to the high
quality of the output and low computational costs. A similar work to optimize the computational
time of one Milano Retinex algorithm, STAR, is presented by Lecca272 The performance of the
new algorithm, named SuPeR, was compared to other approaches through objective assessment.
Results show that SuPeR enhances color images similarly to other Milano Retinex algorithms
but with much shorted computation time, also if not in real time.

4.1.9 Image fusion

Image fusion is a technique used for producing a single image from the merge of two or more
images. An example of the application of ACE to this domain is given in Ref. 128. The goal of
image fusion is to produce a new picture that contains more information than the one included in
the single pictures used for the merge.

4.1.10 Image quality

Ouni et al.90 present a full reference color metric called spatial color image difference (SCID),
which is perceptually correlated with the HVS. In this work, ACE algorithm is used when a
reference image is missing; thus, the color difference is computed between the target image and
the same image enhanced/restored through ACE. In Ref. 91, ACE has been used for a compari-
son of methods aimed at addressing the problem of illuminant variation in image recognition.
Finally, in Ref. 208, the problem of brightness adjustment in real-time image enhancement proc-
ess is considered.

4.1.11 Machine and computer vision

One of the most popular applications of machine vision today is pedestrian detection. In our
study, three papers reported the use of ACE in this application domain (i.e,. Refs. 156, 183,
and 273). Another application of ACE to this domain is focused on face detection: in
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Ref. 184 improvements in terms of detection performance and evaluation protocols are presented
and discussed. Reference 67 presents a study on the use of computer vision applied to painterly
rendering. The authors used ACE to link the process to human vision because of the important
influence that perception and painting play on one another.

4.1.12 Steel bridges

In Ref. 248, the authors applied different restorative methods to steel bridges photographs to
prepare them for bridges health assessments procedures. A discoloration of the coatings is often
an important sign of the progressive damage process of steel bridges, but visual inspections may
easily lead to errors in human interpretation. To reduce the influence of any environmental noises
(e.g., light sources), the distorted colors need to be restored to their authentic ones.

4.1.13 Underwater imaging

In this peculiar application domain, several papers present methods for overcoming problems of
nonuniform contrast and poor visibility caused by bad illumination and color cast that are typical
in underwater imaging. References 185, 274, 297, 298 present studies that compare some of them.
In Ref. 290, a method for addressing nonuniform illumination of underwater images through
segmentation and local enhancement (instead of global) is presented. References 143, 144,
187 present the ROV three-dimensional (3D) project that aimed at creating tools for applying
underwater photogrammetry and acoustic measurements to underwater archaeology practice.
The tools are meant to offer a nonintrusive alternative that would reduce the in-situ investigation
time. Another study performed in underwater archaeology is presented in Ref. 306 and applies a
color enhancement method for reconstructing the 3D model of a shipwreck. Another method is
presented in Ref. 157 that is focused on solving problems due to scattering and color distortion.
Reference 299 presents an enhancement method, based on Retinex, that applies both on under-
water images and videos taking care of low contrast, color degradation, and nonuniform illumi-
nation. Finally, in Ref. 295, a PhD thesis, an underwater imaging system based on several
algorithms for color and illumination normalization has been presented.

4.2 D2: Roles

In column ROLES of the spreadsheet, we assigned to each paper a description of the way they
used the reference papers, choosing by a finite set of values:

• Comparison: ACE is compared with other algorithms;
• Formalization: the paper presents a formal description of ACE algorithm;
• Implementation: the paper illustrates an implementation of ACE algorithm in some pro-

gramming language;
• Modification: the authors modified ACE algorithm and present their own new version;
• State of the art/survey: ACE is cited in systematic review, state of the art, or related work

sections but not used, formalized, implemented, or modified.
• Use: ACE is actually used and its results are presented and discussed.

Figure 5 shows the distribution of the papers according to the roles values and the self-
citation/other authors attribute.

4.2.1 Comparison

All the 39 papers that belong to the comparison class cite ACE in a comparison with one or more
other methods. We analyzed these papers and identified the methods used by each paper and its
frequency of use. We then classified the methods into eight families of methods:

• Bilateral filtering and processing miscellanea;
• Dehazing and underwater various methods;
• Histogram equalization or derived;
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• No-reset Retinex;
• Reset Retinex;
• Variant of ACE;
• Variational Retinex;
• WP/GW normalization.

Figure 6 shows the number of methods grouped in the families, whereas Fig. 7 shows how many
times methods belonging to the families have been used in the 39 analyzed papers.

4.2.2 Implementation

ACE’s implementation by Getreuer has been documented in Ref. 134. Also in Ref. 291, an
implementation of ACE is presented.

Fig. 5 Roles identified during the study and distribution of the papers according to this
classification.

Fig. 6 The methods used in the 39 papers are organized into families of methods. Here, the
number of methods belonging to each family is depicted.
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4.2.3 Modification

The authors of Ref. 157 propose a faster version of ACE, called αACE and tested it on under-
water images. Also the work published in Ref. 292 proposes a modified version of ACE, called
L-ACE, that uses the acyclic side suppression model for brightness correction and Gaussian
distribution to reduce the number of samples.

4.2.4 State of the art/survey

In this section, we discuss the most cited papers that cite ACE algorithm in the systematic review,
in the state of the art, or in related work sections. The papers that result in this classification are
200, with the exclusion of the ones that present self-citations, the considered papers are 174.
Among them, the 1.15% has more than 200 citations, the 2.30% has between 200 and 50 cita-
tions, the 28.74% between 49 and 10 citations, the 37.93% between 9 and 1 citations, and the
29.89% has no citations. Here, we describe highly cited papers.

The most cited paper, by Meylan and Susstrunk,35 presents a new method for the rendering of
HDR images based on the Retinex model. This paper cites the paper B2 while exploring the state
of the art of Retinex path-based methods. This paper underlines the practical problems of ACE
subgroup of algorithms, which have high computational costs and free parameters. Thus, the
authors focus on surround-based Retinex models to implement a new HDR image rendering
method. The theme of HDR images concerns also a paper made by McCann,50 where the author
focuses on the theme of veiling glare. Here, ACE algorithm is presented as a computational
approach that uses spatial comparison to synthesize the optimal display and to reduce the effect
of glare miming the physiological mechanisms such as simultaneous contrast.

A paper with more than 200 citations, which cites ACE as state of the art, was presented by
Schettini and Corchs.103 This paper is a review of methods and techniques to process underwater
images, and authors cite paper A1 in the section concerning the algorithms of image enhance-
ment and color correction. This paper describes the ACE algorithm and reports some images of
its application for the enhancement of an underwater video, but focuses, in particular, on the tests
and results presented by Chambah et al.312 Similarly, in Ref. 110 by Iqbal et al., ACE algorithm is
reported in the state of the art while introducing different image enhancement techniques for
underwater imaging. Also in this case, the citation of paper A1 is presented together with the
applications made by Chambah et al.312 In this paper, the ACE algorithm is discarded by the
authors due to its computational costs. Considering the topic of underwater imaging, the works
by Yang et al.129 and by Ghani and Isa189 present two different underwater image processing

Fig. 7 The chart shows how many times the methods included in the families have been
compared with ACE in the 39 comparison papers.
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methods. In the first paper, the image enhancement algorithm is based on dark channel prior and
in the second work, authors propose a technique which applies the histogram modification of the
integrated RGB and HVS color models. In both the works, ACE papers A and B are presented as
systematic review and no further comments about the algorithm are made.

The Retinex theory and its implementation laid the foundations for many other image
enhancement algorithms and ACE is often cited in the state of the art. An example is the paper
by Tao and Asari,26 which presents a new image enhancement algorithm called adaptive and
integrated neighborhood-dependent approach for nonlinear enhancement and cites ACE paper
B in the “related work” section. Furthermore, in Ref. 81, Bertalmío et al. present the kernel-based
Retinex algorithm. This algorithm has the same characteristics of the original Retinex and shares
some correspondences with ACEmodel. Similarly, in a work Li et al. in Ref. 135, authors propose
a perceptually inspired image enhancement method for correcting uneven intensity in remote
sensing images, which is inspired by the Retinex theory. In this work, ACE papers A and B
are presented in the state of the art when presenting the Retinex theory and the developed method
differs mainly by ACE algorithm because the reflectance is solved within a limited dynamic range
and is supposed compliant to gray word assumption. ACE approach to white balancing is dis-
cussed also in a work by Kwok et al.150 In this paper, ACE paper A is cited as state of the art, when
reviewing the systematic of the different white balancing methods applied by algorithms of color
correction. ACE paper B is cited as state of the art also in a work presented by Tao et al.42 in the
field of face detection. In this paper, authors describe the multiscale Retinex (MSR) as an effective
image enhancement technique and cite ACE as one of the many other implementations of Retinex
theory. In this context, the authors discard the Retinex family of algorithms for their application
due to some issues in rendering images in complex lighting environment.

Another interesting review was presented in 2006 by Agarwal et al.36 This work introduces a
review of the color enhancement algorithms that preserves the color constancy and cites ACE
while explaining the Retinex approach. Authors cite paper B2 with others implementations of
Retinex and then focus on MSR.

The strong correlation between the ACE algorithm and the Retinex theory has been described
in several papers. An interesting work, made by Bertalmío and Cowan,82 demonstrated the close
relationship between Retinex algorithms and the Wilson–Cowan equations (e.g., a set of equa-
tions that describe the temporal evolution of the mean activity of a population of neurons in some
region of the neocortex), which could result in numerous applications to many neural network
problems. In this work, ACE is mentioned to demonstrate this correlation.

Another work where ACE and its family of algorithms is examined for its correlation with
visual perception is presented by Hardeberg et al.69 Here, the authors evaluate the quality of
several color image difference metrics to find out if it is possible to evaluate color gamut mapping
using color image difference metrics. In this work, ACE is cited in the future research directions
as possible perceptual predictor for the development of new color image metrics that correlate
better with HVS.

Since algorithms based on random spray sampling techniques tend to introduce noise in the
output, in Ref. 151 a method is presented to reduce noise based dual tree complex wavelet trans-
form coefficients shrinkage. In this work, the RSR and RACE algorithms are analyzed and
enhanced, and it was seen that the proposed method produces good quality images, removing
noise without altering the underlying image directional structures. An overview of color equali-
zation algorithms is presented in Ref. 217. In this paper, ACE is reported among all the other
Retinex family algorithms. Another overview is presented in Ref. 275. Here, different interpreta-
tions and mathematical formalization of Retinex model are presented and several color enhance-
ment algorithms with a focus on different variational formulations are described. Since Retinex was
widely implemented, in Ref. 190, Zosso et al. made a first overview of the Retinex implementations
existing in the systematic and unified them in a single computation framework. Fitschen et al.209

present a variational model for adapting colors of an image based on a defined target intensity
image. In this paper, ACE is presented as example of hue preserving color adjustment algorithms.

In Ref. 210, Wang et al. present the technology assisted dietary assessment, a system that
automatically identifies and quantifies foods and beverages consumed by the user from mobile
images. In this application, ACE is cited in the step of color calibration as a method that com-
bines Retinex with the GW and the WP assumptions.
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Huang et al., in Ref. 276, review development of different types of smartphone-based ana-
lytical biosensory systems for point-of-care. In this work, ACE paper A1 is cited in the smart-
phone-based colorimetric sensors, when underlining the importance of a correct white balance
and color correction.

In Ref. 300, different center/surround Retinex algorithms are discussed and the authors pro-
vide a quantitative and qualitative analysis to provide suggestion of the best pair of local/global
transformations for a center/surround method.

In Ref. 237, the authors propose an image enhancement approach that goes against the
common assumption that that underwater images have bluish color cast.

In Ref. 169, the authors present an image enhancement algorithm aimed at conserving the
hue and preserve the gamut of R, G, B channels. The intensity input image is transformed into
a target intensity image according to a reference histogram. They define a color assignment
methodology that makes the enhanced image fit a target intensity image.

Finally, Ref. 108 illustrates and discusses a number of techniques that can be used when a
specific application domain demands the preservation of appearance of the original image and
not just its enhancement.

4.2.5 Use

ACE algorithm was successfully used in Refs. 39 and 67 for nonphotorealistic rendering. In
these studies, authors analyze and describe the functioning of the visual cortex through the analy-
sis and use of computational models. Similarly, in Ref. 40, authors develop a perception-based
painterly rendering, including ACE dynamic range-normalization as one function of the devel-
oped system. In Refs. 183 and 273, authors present two new pedestrian detection models that
provide efficient training and detecting. In both models, ACE is applied on the experimental
data-sets before the extraction channel features. This use of ACE is proposed by Benenson et al.,
in Ref. 156. Here, authors use ACE algorithm as global image normalization before computing
the three image channels in a system of object detection. ACE algorithm was found useful also to
to de-weather fog-affected images, as presented in Ref. 87. In this work, ACE is used in the color
enhancement step of the algorithm to restore the natural contrast of the image. Schaefer et al., in
Refs. 85 and 117, use ACE algorithm to normalize the colors of dermoscopy images before the
segmentation step. In another work,86 the same authors archive an accurate segmentation using
a co-operative neural network edge detection system, always using ACE in the preprocessing
step. ACE algorithm was used in the preprocessing step also in Ref. 184. In this work, a high
performing face detector model is presented, and ACE was found successful to enhance the
image colors before the detection step. Feng et al. in Ref. 128 propose a new image fusion
method. In this work, ACE is used to enhance the colors in the images resulting from the fusion,
producing images more useful for human perception or machine vision. In Ref. 126, authors
combine a region-based segmentation with ACE algorithm, to segment fish in images with
a complex background in water. A new full-reference image quality metric, named SCID is
presented by Ouni et al. in Ref. 90. The metric is based on characteristics of the HVS and when
an image reference is not available the SCID is combined with ACE. In Ref. 288, ACE is used
to enhance the colors for LED illuminants by increasing the color difference between pixels
while changing the image color gamut. Prado et al. in Ref. 306 use ACE for 3D reconstruction
and virtual reality applications. In this work, ACE is used to perform a color enhancement on
the input images before the 3D reconstruction of the Rio Miera wreck ship. Finally, in Ref. 298,
ACE is used for color enhancement of underwater images, together with HIST and PCA
methods.

4.3 Brief Overview on Self-Citation Papers

4.3.1 D1: application domains

As can be seen in Table 3, some of the application domains that have been identified in this study
are only addressed in papers published by the authors of paper A and paper B. These application
domains and their occurrences are shown in Fig. 8.
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• Advertising posters92

• Astrophotography238,249,277

• High dynamic range51

• Interfaces9,17,18

• Printing10

• Psychophysical studies93,104

• Stereo images111

• Virtual reality28

4.3.2 D2: roles

As visually reported in Fig. 5, only one paper included in this study has been classified as having
formalized ACE in a variational form and has been published by paper A and paper B authors.52

4.4 D1 and D2 Interrelation

To conclude the analysis of the data gathered in this study, we want to present some results on the
interrelation between D1 and D2, i.e., application domains and roles. Among the six different
roles used for classifying the papers, those that present an implementation of ACE, its formali-
zation, or cite it in state of the art/survey sections are not linked to a specific application domain.
On the other hand, the papers that cite ACE as comparison with their own method and/or with
other methods, and those that modify or use it, most of the times describe a specific application
domain.

For the papers published by paper A and paper B authors, of the two papers with role modi-
fication, one is linked to image quality, whereas the other has no specific application domain. Out
of the 10 comparison papers, 2 have no application domain, whereas the other 8 describe works
in astrophotography, color, image enhancement, movies and film restoration, printing, and stereo
images. The 23 use papers are all linked to a specific application domain: movies and film resto-
ration, cultural heritage, interfaces, psychophysical studies, advertising posters, astrophotogra-
phy, high dynamic range, image enhancement, image quality, and virtual reality. Figure 9 shows
the details for comparison and use papers.

For the papers published by other authors, of the two papers with role modification, one is
linked to underwater imaging, whereas the other has no specific application domain. Out of the
39 comparison papers, 6 have no application domain, whereas the other 33 describe works in
image enhancement, underwater imaging, image quality, movies and film restoration, cultural

Fig. 8 The application domains used only by papers published by paper A and paper B authors.
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heritage, fish behavior monitoring, and steel bridges. The 18 use papers are all linked to a spe-
cific application domain: machine and computer vision, medicine, art, image enhancement,
underwater imaging, biology, color, image fusion, and image quality. Figure 10 shows the details
for comparison and use papers.

5 Conclusions

The scoping review presented in this paper shows the widespread use and implementation of the
automatic color enhancement algorithm. The most diffused fields of application of ACE algo-
rithm are image enhancement (25% of the considered papers) and underwater imaging (14.29%
of the considered papers). The main roles of ACE, as identified by our study are: state of the art/
survey (67.11% of the considered papers) and comparison (16.44% of the considered papers).

In this scoping review, we have found that ACE algorithm is appreciated for its capability of
simultaneously standardizing the image illumination, revealing hidden details, and enhancing
the image contrast so that the images it produces are not only particularly pleasant for observers
but also improve the following steps of object localization and segmentation. Moreover, ACE
can be easily implemented though parallel, optimized computation is advisable due to its high
computational costs. Nevertheless, during years of applications, ACE demonstrated promising

Fig. 9 The interrelation between D2 and D1 for the self-citation papers classified with role com-
parison and use.

Fig. 10 The interrelation between D2 and D1 for the papers written by other authors classified with
role comparison and use.
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results among all the SCAs so that some optimized implementations have been developed, which
also perform automatic parameters tuning. From this analysis, we have found a growing interest
of the scientific community in ACE algorithm and, in general, toward the usage of SCAs. Thanks
to this work, it has been possible to better understand the directions in which the application of
ACE is in course of development. Furthermore, the main advantages in the use of this algorithm
have been underlined, together with its limits and needs. Starting from this study, we hope that
the research in the field of SCAs will continue in the future and that the fields of colorimetry and
image enhancement will develop new spatial models and algorithms able to deal with complex
scenes in a global and local approach.
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