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Abstract. Driven by the development of freeform four-mirror solutions, we review and compare analytical meth-
ods to generate starting point designs with various states of correction, surface types, symmetry, and obscura-
tion. The advantages and disadvantages of each are examined. We have combined several concepts and
techniques from the literature to analytically generate unobscured freeform starting point designs that are
corrected through the third-order image degrading aberrations. The surfaces in these starting point designs
are described as base off-axis conics that image stigmatically for the central field point, also known as
Cartesian reflectors, with an aspheric departure “cap” (quartic with the aperture) added to the Cartesian reflec-
tors. Tilt angles are chosen to cancel field-asymmetric field-linear astigmatism and unobscure the system.
Paraxial data from an equivalent on-axis system are used to solve a system of linear equations to determine
the magnitude of the aspheric departure “caps” that are placed on top of the base Cartesian reflectors, in order to
eliminate the remaining third-order image degrading aberrations. In this approach, each aspheric departure “cap”
is centered about the intersection of the optical-axis-ray, also known as the base ray, with the base surface,
rather than being centered about the axis of rotational invariance. © The Authors. Published by SPIE under a Creative
Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication,
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1 Introduction
Before optimizing any optical system in software, suitable
starting point designs must be chosen. A suitable starting
design is one that has the desired first-order properties and
geometry, may be corrected for different orders of aberrations,
or has a potential for aberration correction. There are several
different analytical design approaches that can be used to gen-
erate a starting point design, each with their own advantages
and disadvantages, which are discussed in the context of sur-
face type, symmetry type, and aberration correction type.

Three surface types, spheres, conics, and “grown” surfa-
ces, are considered in discussing starting points, as shown in
Table 1. Starting with spherical surfaces may be desirable if
the goal is to minimize the surfaces’ deviation from a best-fit
sphere for the purpose of manufacturability. Another advan-
tage is that setting up a spherical starting point design in lens
design software is simpler than other surface types. However,
spherical surface starting points have fewer degrees of free-
dom for aberration correction.1 Conic surfaces allow more
degrees of freedom for aberration correction, but conic sur-
face starting points may start off with large deviations from a
best-fit sphere. However, if the goal is to minimize departure
from a conic for testability with null optics, they constitute a
viable path.2,3 “Grown” surfaces are solved for using differ-
ential equations and are freeform surfaces. The freeform
“grown” surfaces have more degrees of freedom for aberra-
tion compared to conic surfaces but are the most complicated
to implement and are currently limited to two mirrors
(a four-mirror system can be generated by putting two
“grown” surface systems back-to-back).4,5

The two symmetry types shown in Table 1 are rotational
and plane. For obscured starting points, rotational symmetry
may be considered. For unobscured starting points, rotation-
ally symmetric systems can be made unobscured by offset-
ting the aperture, biasing the field, or a combination of both.
The aberration theory for rotational symmetry is simpler than
the aberration theory for plane symmetry. However, unob-
scured rotationally symmetric starting points are inconven-
ient to implement in lens design software if one wants to
add freeform terms centered about the optical-axis-ray
(OAR),6 also known as the base ray.7 Unobscured rotation-
ally symmetric starting points also do not have degrees of
freedom for choosing the desired folding angles and
geometry. Unobscured planar-symmetric systems have more
degrees of freedom to choose the folding angles and geom-
etry, and the mirrors’ vertices are conveniently centered
about the base ray for these types of systems. However, the
aberration theory for unobscured planar-symmetric systems
is more complex.8

The aberration correction types shown in Table 1 are stig-
matic imaging at each surface, correction through third-
order, and aplanatic. Systems that satisfy stigmatic imaging
at every surface not only require conic surfaces, but also the
conic surfaces must operate at specific conjugates such that
the individual surface contributions to spherical aberration
are all zero; these types of surfaces are also referred to as
Cartesian reflectors, and a system made of only Cartesian
reflectors is known as a system of confocal conics. The
main advantage of these types of systems is that they are cor-
rected for all orders of spherical aberration. However, these
types of systems can only be corrected through third-order if
they are afocal, or if the absolute value of the magnification
is 1.9 Systems with spherical surfaces that are corrected
through third-order have the advantage of better performance
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starting off, at the expense of degrees of freedom for the
geometry of the system.10 When evolving these various start-
ing points to freeform solutions, the aberration theory of
freeform surfaces may further reveal best starting points in
the folded geometry,11,12 with the aim to reach diffraction-
limited performance across large field of views and low
F-numbers.

In the remainder of this paper, we will describe in Sec. 2
how starting point methods are combined. In Sec. 3, we show
an example design generated using the starting point method
described in Sec. 2 to illustrate the method’s efficacy.

2 Combination of Starting Point Methods
To generate starting points for freeform designs that are
unobscured and corrected through the third-order image
degrading aberrations, a combination of some of the methods
from Table 1 is used, as discussed in Secs. 2.1–2.3. The sur-
faces that are generated with the procedure described here
can be thought of as off-axis sections of stigmatically imag-
ing conics with aspheric caps on top. By aspheric, we mean
quartic with the radial coordinate of the part. However, these
aspheric caps are centered about where the OAR intersects
the surface, not about the axis of rotational symmetry for
the underlying off-axis conic. The purpose of the aspheric
caps is to correct for the field aberrations of field-linear
coma and field-quadratic astigmatism while keeping the sum
of spherical aberration zero.

2.1 Properties of Planar-Symmetric Confocal Conic
Systems

Confocal conic systems are systems that are composed
entirely of Cartesian reflectors, which are off-axis conics
being used stigmatically. When the rotational symmetry of
a confocal conic system is broken by tilting and decentering
the mirrors to render it unobscured, it still does not have
spherical aberration of any order nor any other field-constant

aberrations (provided that the surface shapes are still
Cartesian reflectors), because there is always a node at
the center of every aberration field; additionally, systems
composed of Cartesian reflectors do not have anamorphism.8

Ignoring distortion and piston terms, the remaining third-
order image degrading aberrations are field-linear coma,
field-asymmetric field-linear astigmatism, field-quadratic
astigmatism, and field curvature. The only aberration out of
these that would not be found in a system with rotational
symmetry is field-asymmetric field-linear astigmatism. An
example of a system limited by field-asymmetric field-linear
astigmatism is given in Sec. 3.2. If designers can eliminate
the field-linear field-asymmetric astigmatism in a system of
confocal conics, they can eliminate the remaining third-order
aberrations using aspheric deformations about the OAR or
base ray, as further explained in Sec. 2.2.

In a rotationally symmetric confocal conic system, the
Cartesian reflectors are often described with the parameters
R and k, where R is the radius of curvature and k is the conic
constant. When breaking the rotational symmetry of a con-
focal conic system to yield an unobscured planar-symmetric
system, three parameters are used to describe the Cartesian
reflectors. These parameters can be R, k, and an offset
parameter, such as decenter in the y direction. However,
we use the parameters lo, li, and θ, where lo is the distance
from the local coordinate system origin to the object point
(i.e., central field point, which lies on the OAR), li is
the distance from the local coordinate system origin to the
image, and θ is the angle of incidence of the OAR at the
local coordinate system origin of the surface. In this descrip-
tion of Cartesian reflectors, the sag, slope in x, and slope in
y of the surface are all zero at the local coordinate system
origin. This is a convenient property because the CODE
V decenter type “decenter and bend” can be used, where the
tilt angle of the surface “alpha” can be set to θ (i.e., the
angle of incidence of the OAR at the current surface), result-
ing in the OAR intersecting the local coordinate system

Table 1 Comparison of starting point design methods with pros and cons, grouped by surface type.

Freeform surface
starting point Method Pros Cons

Spherical Four tilted spherical mirrors1 Plane symmetry Does not correct higher order
aberrations

Rotationally symmetric all-spherical
solutions10

Corrected through third-order Rotationally symmetric

Conic (including off-axis
subapertures)

Rotationally symmetric all-conic
solutions9

Stigmatic imaging at every surface,
corrected through third-order

Afocal or 1× Mag only,
rotationally symmetric

Solutions from Korsch9 Corrected through third-order Rotationally symmetric

Off-axis conic layout tool Stigmatic imaging at every surface,
plane symmetry

Does not correct higher order
aberrations

Off-axis conics from aberration
coefficients for plane-symmetry8

Stigmatic imaging at every surface,
corrected through third-order,
plane symmetry

Afocal or 1× Mag Only

“Grown” surfaces Generalized sine condition for the
design of aplanatic optical systems5

Aplanatic, plane symmetry Two-mirror

Afocal two freeform mirror4 Aplanatic, plane symmetry Two-mirror
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origin of the next surface after reflecting of the current one.
The sag of the freeform surfaces generated with the combi-
nation of methods proposed here constitutes a starting point
to the final freeform surfaces optimization. Their sag can be
decomposed into the base Cartesian reflector sag and the
aspheric cap:

EQ-TARGET;temp:intralink-;e001;63;686Sagðx; yÞ ¼ SagCartesian Reflectorðlo; li; θ; x; yÞ þ Aðx2 þ y2Þ2;
(1)

where Sagðx; yÞ is the total sag of the surface in the
local coordinate system as a function of local coordinates
x and y. SagCartesian Reflectorðlo; li; θ; x; yÞ is the sag of the
Cartesian reflector as a function of object and image distan-
ces, lo and li, angle of incidence of the OAR, θ, and the
local coordinates x and y, whose expression is detailed in
Appendix. The aspheric cap coefficient, A, specifies the
magnitude of the surface term that is quartic with radial
coordinate of the surface.

The first-order properties of a confocal conic system,
made of a chain of Cartesian reflectors described by Eq. (1),
obey the thin lens equation:

EQ-TARGET;temp:intralink-;e002;63;509Φ ¼ −
n
f
¼ n 0

f 0 ¼
n 0

li
−

n
lo
; (2)

where Φ is the power of the optical surface, f is the front
focal length, f 0 is the back focal length, n is the index of
refraction before the surface, n 0 is the index of refraction
after the surface, and lo and liare the signed object and
image distances, respectively. All local coordinate systems
adopt a right-handed frame of reference. With this sign
convention, a negative distance indicates that the associated
z coordinate is negative in the local coordinate system.
Figures 1–3 show Cartesian reflectors described by
the parameters in Eq. (1), for different configurations.
Respectively, they are an ellipse, a hyperbola, and a parabola.
The angle θ, defined from the normal to the ray, is positive
for object points that are in the quadrant of the local coor-
dinate system, where z < 0 and y > 0 or for object points that
are in the quadrant, where z > 0 and y < 0; this convention
was conveniently chosen as it matches CODE V convention,
which is the software we chose to interface with. 2.2 Eliminating Field-Linear Field-Asymmetric

Astigmatism in a Confocal Conic System

One of the key insights from nodal aberration theory is that it
is possible to find tilted/decentered systems that exhibit aber-
rations of the “ordinary” kind, where two astigmatism nodes
collapse to a single node at the center of the field while keep-
ing the coma node at the center of the field as well.13,14 In
Fig. 4(a), there is an astigmatism field with one node and it
looks like “ordinary” field-quadratic astigmatism, whereas in
Fig. 4(b), there are two nodes exemplifying binodal astigma-
tism. Additionally, tilted aspheric terms that are not decen-
tered produce aberrations of the “ordinary kind,” meaning
field-linear coma, and field-quadratic astigmatism,13 which
is why the aspheric caps used in the proposed method
need to be centered around the intersection of the OAR with
the surface and not centered around the axis of rotational
symmetry of the surface.

To cancel field-asymmetric field-linear astigmatism, the
designer needs to select the right combination of mirror

Fig. 1 Elliptical Cartesian reflector, stigmatically imaging from a real
object point to a real image point. The surface is described by the
three parameters, l o , l i , and θ, in the local coordinate system. The
z axis defines the normal to the surface at the intercept of the OAR.

Fig. 2 Hyperbolic Cartesian reflector, stigmatically imaging from a vir-
tual object point to a real image point. The surface is described by the
three parameters, l o , l i , and θ, in the local coordinate system. The z
axis defines the normal to the surface at the intercept of the OAR.

Fig. 3 Parabolic Cartesian reflector, stigmatically imaging from an
object point at infinity to a real image point. The surface is described
by the three parameters, l o (at infinity), l i , and θ, in the local coordinate
system. The z axis defines the normal to the surface at the intercept of
the OAR.
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tilts [i.e., θ in Eq. (1)]. Figure 5 displays an example of a two-
mirror system made of confocal conics in a rotationally sym-
metric case and a planar-symmetric case. The primary, which
is a parabola, shares one of its conic foci with the secondary,
which is a hyperbola. The shared focus is marked with an X.
Figure 5(a) shows the rotationally symmetric system. In
Fig. 5(b), a tilted geometry is shown, and while the tilt on
the primary is increased to render an unobscured system,
the tilt on the secondary is solved to cancel field-asymmetric
field-linear astigmatism. In this configuration, the astigma-
tism across the field of view has a single node in the center
and is “ordinary.” As the tilt on the primary increases, the tilt
on the secondary must increase as well to keep linear astig-
matism canceled.

There are different ways to solve for the angle on the last
mirror in a confocal conic system that cancels linear astig-
matism. One way is to use the aberration coefficients for
planar-symmetric systems.8 Another way is to use the closed
form of the linear astigmatism free condition for a system of
confocal conics.15 In this paper, we use the latter.

2.3 Solving for the Aspheric Caps

Correcting the Seidel third-order aberrations in a given first-
order layout for a rotationally symmetric system of four
mirrors using aspheric deformations may be achieved via
a linear system of equations. 16 It is important to note that
a system made of Cartesian reflectors can only be corrected

Fig. 4 Aberration plots: (a) full-field display of Z5/Z6 Fringe Zernike astigmatism showing one astigma-
tism node in the center (“ordinary” field-quadratic astigmatism) and (b) full-field display with two astig-
matism nodes (binodal astigmatism).

Fig. 5 Two-mirror systems: (a) a rotationally symmetric two-mirror system of confocal conics and (b) a
two-mirror system of confocal conics with the primary and secondary tilted to render an unobscured
system while simultaneously canceling field-asymmetric field-linear astigmatism. The dotted line is
the axis of rotational symmetry for the parabolic primary, and the dashed line is the axis of rotational
symmetry for the hyperbolic secondary; these axes intersect at the shared focus marked with an “X.”
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through third-order if the system has a magnification with an
absolute value of 1× or if the system is afocal.9 To make a
focal system with an infinite conjugate that is corrected
through third-order, one cannot use only Cartesian reflec-
tors/confocal conics; instead, aspheric deviations from the
base Cartesian reflector are required. A two-mirror example
of this concept is a classic rotationally symmetric Cassegrain
telescope, which consists of a stigmatically imaging para-
bolic primary and a stigmatically imaging hyperbolic secon-
dary, which cannot be corrected for field-linear coma.
However, a two-mirror Ritchey–Chretien telescope has third-
order spherical aberration introduced at the primary that is

cancelled at the secondary but in such a way that the
field-linear coma is also corrected.

The linear system of equations that needs to be solved to
get the aspheric deviation from the Cartesian surfaces to
correct for the Seidel third-order field aberrations in a
four-mirror system is expressed as follows:
EQ-TARGET;temp:intralink-;e003;326;4482
66666664

1 1 1 1

4
�
y1
y1

�
4
�
y2
y2

�
4
�
y3
y3

�
4
�
y4
y4

�
4
�
y1
y1

�
2
4
�
y2
y2

�
2
4
�
y3
y3

�
2
4
�
y4
y4

�
2

4
�
y1
y1

�
3
4
�
y2
y2

�
3
4
�
y3
y3

�
3
4
�
y4
y4

�
3

3
77777775

2
66664
ΔW0401

ΔW0402

ΔW0403

ΔW0404

3
77775¼

2
66664
ΔW040

ΔW131

ΔW222

ΔW311

3
77775;

(3)

where y1 is the height of the paraxial chief ray on surface 1,
y1 is the height of the paraxial marginal ray on surface 1,
ΔW0401

is the spherical aberration introduced by the aspheric
cap on surface 1, ΔW040 is the total change in spherical aber-
ration for the system,ΔW131 is the total change in field-linear
coma for the system, ΔW222 is the total change in field-quad-
ratic astigmatism for the system, and ΔW311 is the total
change in field-cubic distortion for the system. The vector
on the right-hand side is replaced with the negative of the
aberration coefficients in the first-order layout made of
Cartesian reflectors. The system is then solved for the vector
on the left-hand side to get the amount of spherical aberration

Fig. 6 Three folding geometries generated by the confocal conic layout tool for four mirror layouts (a–c),
where three specific points can be repositioned to manipulate the system: the two conic foci (black cir-
cular dots, most are outside the plotted area) and the intersection point with the OAR (black diamonds).
The green and red raytraces correspond to two different points in the field of view intersecting at the pupil
(three black squares) and shown separated at the image plane.

Fig. 7 Lens layout and surface descriptions for a rotationally symmet-
ric equivalent four-mirror system to the planar-symmetric system in
Fig. 6(c).

Table 2 Parameters of rotationally symmetric equivalent four-mirror system from Fig. 7.

Parameter Mirror 1 Mirror 2 Mirror 3 Mirror 4

Radius (mm) −743.522 −186.402 −448.0823 −1246.807

k −1 −0.1168 −0.0161 −40.8171

A (mm−4) 6.4631 × 10−12 −5.05 × 10−9 −7.0589 × 10−10 −6.3811 × 10−9

Thickness (mm) −232.8391 230.0154 −228.8836 231.3688
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needed at each surface, and thus the amount of aspheric
deviation needed at each surface.

3 Example of a Four-Mirror System
Here, we demonstrate that the aspheric caps needed for third-
order aberration correction are the same for a rotationally
symmetric equivalent system and the unobscured planar-
symmetric system, where equivalent is defined in Sec. 3.1.
To this end, we developed a tool for creating the layout of a
four-mirror confocal conic system shown in Fig. 6, where the
three points that needed to define a Cartesian reflector can be
moved around. The three points needed are the two conic
foci for stigmatic imaging, and one point on the surface,
where the OAR intersects the surface. The conic foci are
represented as black circular dots in Fig. 6; only the nearby
conic foci are visible, the others are outside the plotted area.
The intersections of the surfaces with the OAR are repre-
sented by black diamonds, as shown in Fig. 6. The entrance
pupil of the system can be manipulated using the black
squares in Fig. 6. This tool allows the designer to see the
packaging geometry directly and manipulate the system to
be unobscured and fit within a particular package shape.
The designer must make the system unobscured and choose

Table 3 Parameters describing the confocal conic system in Fig. 8.
The object distance is l o , the image distance is l i , and the angle of
incidence of the OAR is θ.

Parameter Mirror 1 Mirror 2 Mirror 3 Mirror 4

l o (mm) ∞ −138.922 −513.205 −168.742

l i (mm) −371.761 −283.19 −397.626 231.369

θ (deg) 10.482 −12.752 8.948 −9.298

Table 4 Parameters describing the confocal conic system in Fig. 9.
The object distance is l o , the image distance is l i , and the angle of
incidence of the OAR is θ.

Parameter Mirror 1 Mirror 2 Mirror 3 Mirror 4

l o (mm) ∞ −138.922 −513.205 −168.742

l i (mm) −371.761 −283.190 −397.626 231.369

θ (deg) 10.482 −12.752 8.948 −8.172

Fig. 8 Unobscured planar-symmetric confocal system: (a) lens layout; (b) full-field display of Fringe
Zernike astigmatism Z5/Z6, illustrating that there is residual field-asymmetric field-linear astigmatism;
(c) plot of the magnitude of the astigmatism versus the y coordinate in the field, illustrating the linear
dependence of the magnitude of astigmatism with the field coordinate.

Fig. 9 Unobscured planar-symmetric confocal system with the angle of the last mirror solved to cancel
field-asymmetric field-linear astigmatism: (a) lens layout; (b) full-field display of Fringe Zernike astigma-
tism Z5/Z6, illustrating that the residual field-asymmetric field-linear astigmatism is cancelled; (c) plot of
the magnitude of the astigmatism versus the y coordinate in the field, illustrating the quadratic depend-
ence of the magnitude of astigmatism with the field coordinate.
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the right combination of tilt angles that cancels field-asym-
metric field-linear astigmatism.15 The system in Fig. 6(c) was
exported to lens design software to demonstrate the efficacy
of the aberration correction.

In Sec. 3.1, we discuss a third-order aberration corrected
rotationally symmetric equivalent system whose aspheric
terms, which are deviations from a rotationally symmetric

Cartesian reflector, are the same as the aspheric terms for
a third-order system of planar-symmetric Cartesian reflec-
tors, also known as off-axis conics with aspheric caps. In
Sec. 3.2, we show the performance of the confocal conic sys-
tem in Fig. 6(c) without aspheric terms added to the surface.
In Sec. 3.3, we demonstrate the correction of third-order
aberrations achieved by adding aspheric caps, where the
coefficients of the aspheric caps are obtained from the rota-
tionally symmetric equivalent system.

3.1 Rotationally Symmetric Equivalent System

Figure 7 shows a rotationally symmetric equivalent of the
system in Fig. 6(c). It is equivalent in the sense that the mir-
ror powers and separations as measured along the OAR are
the same as that of the unobscured confocal conic system

Table 5 Amount of spherical aberration introduced at each surface
by the aspheric caps in waves at a wavelength of 587.56 nm.

Mirror 1 Mirror 2 Mirror 3 Mirror 4

W 040 (waves) −0.1375 2.0949 3.1585 −0.926

Fig. 10 Aberration plots showing that the aspheric caps were effective at eliminating field-linear coma:
(a) full-field display of Fringe Zernike coma Z7/Z8 before adding the aspheric caps to the system of con-
focal conics; (b) same full-field display after adding the aspheric caps aberration versus the y field coor-
dinate; (c) plot of the magnitude of the aberration versus the y field coordinate before adding the aspheric
caps; and (d) plot of the magnitude after adding the aspheric caps. The worst field point before adding
the aspheric caps is 0.48 waves of Z7/Z8, while the worst field point after adding the aspheric caps is
0.084 waves at a wavelength of 587.56 nm.
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with the Cartesian reflector powers defined by Eq. (2) using
the parameters from Eq. (1) as inputs. In Table 2, the param-
eters are describing the rotationally symmetric equivalent
system shown in Fig. 7; the radii of curvature characterizing
the mirror power for each surface as well as the conic con-
stant k that is needed for the surface to be a Cartesian reflec-
tor with stigmatic imaging at each surface are provided.
Also, the last row is the coefficient A for the fourth-order
asphere that is needed to correct for the third-order field aber-
rations. These are the same A coefficients that are inputs to
Eq. (1) that describes the shape of the freeform starting point
surfaces as a base Cartesian reflector with an added aspheric
cap. This system has an entrance pupil diameter of 100 mm,
an effective focal length of 805 mm, and a circular field of
view with a half angle of 1 deg. The system is evaluated at
a wavelength of 587.56 nm for the rest of this paper. To

convert this rotationally symmetric design to an unobscured
planar-symmetric design, the only parameter that needs to be
adjusted in Eq. (1) is the tilt angle θ, which is zero for all
surfaces in a rotationally symmetric design. When θ is
changed, the underlying base Cartesian reflector will change
its shape but not the aspheric cap.

3.2 Unobscured Planar-Symmetric Confocal Conic
System without Aspheric Caps

To illustrate the dominant aberration (i.e., field-asymmetric
field-linear astigmatism) in a system that does not have the
correct combination of tilt angles, Fig. 8(a) shows the lens
layout for the unobscured planar-symmetric confocal system
from Fig. 6(c); the system was exported to lens design soft-
ware for evaluation. The parameters describing this system

Fig. 11 Aberration plots showing that the aspheric caps were effective at eliminating field-quadratic
astigmatism: (a) full-field display of the astigmatism line images as calculated by the Coddington raytrace
before adding the aspheric caps to the system of confocal conics; (b) same full-field display after adding
the aspheric caps; (c) associated plot of the magnitude of the aberration versus the y field coordinate
before adding the aspheric caps; and (d) plot of the magnitude after adding the aspheric caps. The worst
field point before adding the aspheric caps has a line of 4.8 μm, while the worst field point after adding the
aspheric caps has a line of 7.0 μm.
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can be found in Table 3. In this example, the tilt angle of the
last mirror does not satisfy the linear astigmatism free con-
dition, it is off by 1.12 deg, so there is residual field-asym-
metric field-linear astigmatism. Figure 8(b) shows the full-
field display of Fringe Zernike astigmatism Z5/Z6, illustrat-
ing the residual field-asymmetric field-linear astigmatism.
The orientation of the astigmatism going halfway around
the node is oriented 90 deg compared to the starting point,
whereas “ordinary” rotationally symmetric astigmatism
would have the same orientation going halfway around the
node compared to the starting point, as shown in Fig. 4(a).
Figure 8(c) is a plot of the magnitude of the astigmatism
versus the y coordinate in the field, illustrating the linear
dependence of the magnitude with the field coordinate.

By solving the angle of the last mirror to satisfy the linear
astigmatism-free condition, the two astigmatism nodes can
be brought together, making the astigmatism field closer
to ordinary, as shown in Fig. 9. The parameters describing
this system can be found in Table 4. The tilt was adjusted
by 1.12 deg. Compared to the system in Fig. 8, cancelling the
residual field-asymmetric field-linear astigmatism reduced
the astigmatism of worst field point to 0.06 waves of Z5
and Z6 astigmatism compared to the 0.35 waves. The orien-
tation of the astigmatism is now the same going halfway
around the node compared to the starting point, and the
field dependence of the magnitude is quadratic.

3.3 Unobscured Planar-Symmetric Confocal Conic
System with Aspheric Caps

Once the aberrations are “ordinary” again, the aspheric caps
from Sec. 3.1 can be put on top of the Cartesian reflector base
surfaces. These aspheric caps will correct for the rest of the
third-order aberrations. The amount of spherical aberration
introduced at each surface by the aspheric caps, as deter-
mined by Eq. (3), is shown in Table 5.

Figure 10 shows the full-field displays of Z7 and Z8
Fringe Zernike coma before and after adding the aspheric
caps. Before adding the caps, the field dependence of the
magnitude of the coma was linear. After adding the caps,
the field dependence of the magnitude of the coma is quad-
ratic and the worst field point was reduced from 0.48 waves
to 0.084 waves of coma. This shows that the aspheric caps
were effective at canceling the field-linear coma as expected.

Figure 11 shows full-field displays of the astigmatism line
images as calculated by the Coddington raytrace in CODE V.
In this computation, the Coddington raytrace option is shown
instead of the Fringe Zernike pupil fit because there is a non-
zero contribution from higher order aberrations after adding
the aspheric caps, which makes it appear as if there is a field
constant dependence of astigmatism. The worst field point
before adding the aspheric caps has a 4.8 μm line, while
the worst field point after adding the aspheric caps has
a line of 7.0 μm. The field dependence of the magnitude
around the center of the field went from quadratic before
adding the aspheric caps to quartic after adding the aspheric
caps, demonstrating the efficacy of the aspheric caps at
eliminating the field-quadratic astigmatism.

Figure 12 shows full-field displays of Z9 Fringe Zernike
spherical aberration before adding the aspheric caps and
after. The goal of adding the caps is to correct for the
field aberrations without introducing a large amount of
spherical aberration. The worst field point after adding the
caps has 0.015 waves of spherical aberration, even though
a few waves of spherical aberration are introduced at the
individual surfaces; the total spherical aberration after sum-
ming the individual surface contributions is small.

Figure 13 shows full-field displays of the RMS wavefront
error before and after adding the aspheric caps. The aspheric
caps reduced the worst field point from an RMS wavefront
error of 0.17 waves to 0.09 waves, demonstrating the efficacy
of the aspheric caps at improving performance of design.

Fig. 12 Aberration plots showing that the aspheric caps did not add large amounts of spherical aberra-
tion: (a) full-field display of Fringe Zernike spherical aberration Z9 before adding the aspheric caps to the
system of confocal conics; (b) same full-field display after adding the aspheric caps. The worst field point
before adding the aspheric caps is 0.00071 waves of Z9, while the worst field point after adding the
aspheric caps is 0.015 waves at a wavelength of 587.56 nm. The aspheric caps did not introduce
a large amount of spherical aberration.
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4 Conclusion
Several analytical starting point design methods have been
considered with various symmetries and states of correction.
It is shown in this paper that a combination of these methods
allows for unobscured starting points that are corrected for
the third-order image degrading aberrations. The tool and
procedures outlined in this paper were applied to generate
four-mirror starting points for freeform designs, whose sur-
faces are base Cartesian reflectors with aspheric caps to cor-
rect the field aberrations. These starting points are limited by
higher order aberrations that can then be corrected by adding
and optimizing freeform terms for the surfaces.

Appendix: Sag of Cartesian Reflectors in their
Local Coordinate Systems
The equation for the sag of a Cartesian reflector in the local
coordinate system of the surface is first given and then

derived. Let the object and image vergences be the reciprocal
of the object and image distances (i.e., Vo ¼ 1∕lo and
Vi ¼ 1∕li) such that an object or image at infinity will result
in a vergence of zero. The angle θ is the angle of incidence of
the OAR, and x and y are the local coordinates. The sag of a
Cartesian reflector in terms of these variables, denoted as
SagCartesian ReflectorðVo; Vi; θ; x; yÞ, may then be expressed as
follows:

EQ-TARGET;temp:intralink-;e004;326;376SagCartesian ReflectorðVo; Vi; θ; x; yÞ ¼
ðAþ BÞ

C
; (4)

EQ-TARGET;temp:intralink-;e005;326;323A ¼ 2ðVi þ VoÞ cosðθÞ½2þ ðVo − ViÞy sinðθÞ�; (5)

EQ-TARGET;temp:intralink-;e006;63;248B¼−ðViþVoÞ
ffiffiffi
2

p 
½4−ðV2

i þ6ViVoþV2
oÞx2−4VoViy2þð4þðVi−VoÞ2x2−4ViVoy2Þcosð2θÞþ8ðVo−ViÞycos2ðθÞsin θ�

q
;

(6)

EQ-TARGET;temp:intralink-;e007;63;178C ¼ ½V2
i þ 6ViVo þ V2

o − ðVi − VoÞ2 cosð2θÞ�: (7)

This is an exact equation for the sag of a Cartesian reflector
in the local coordinate system, where the OAR is incident with
the origin, the slope of the surface is zero at the origin, and the
sag of the surface at the origin is zero (i.e., the x − y plane of
the local coordinate system is tangent to the surface at the ori-
gin). Using the coordinate system in Fig. 1, the location of the
stigmatic imaging points can be conveniently written in terms
of lo, li, and θ. The Cartesian reflector is then solved by writ-
ing that the geometrical path for all points on the surface is

constant and equal to the sum of the vergences Vo and Vi,
a property of conic sections of revolution, which is given
as follows:
EQ-TARGET;temp:intralink-;e008;326;156

1

Vo
þ 1

Vi
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ

�
yþ 1

Vo
sinðθÞ

�
2

þ
�
z−

1

Vo
cosðθÞ

�
2

s

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ

�
y−

1

Vi
sinðθÞ

�
2

þ
�
z−

1

Vi
cosðθÞ

�
2

s
;

(8)

Fig. 13 RMS wavefront error full-field display plots: (a) before adding the aspheric caps and (b) after
adding the aspheric caps. The worst field point before adding the aspheric caps is 0.17 waves of
RMS wavefront error, while the worst field point after adding the aspheric caps is 0.090 waves of
RMS wavefront error at a wavelength of 587.56 nm.
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where x, y, and z are the coordinates of points on the surface
of the Cartesian reflector. To get Eq. (4), solve Eq. (8) for z as
a function of x, y, Vo, Vi, and θ, which will give the sag in the
local coordinate system.
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