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Abstract. Accurate bidirectional reflectance distribution function (BRDF) models are essential
for computer graphics and remote sensing performance. The popular microfacet class of BRDF
models is geometric-optics-based and computationally inexpensive. Fitting microfacet models to
scatterometry measurements is a common yet challenging requirement that can result in a model
being fit as one of several unique local minima. Final model fit accuracy is therefore largely
based on the quality of the initial parameter estimate. This makes for widely varying material
parameter estimates and causes inconsistent performance comparisons across microfacet mod-
els, as will be shown with synthetic data. We proposed a recursive optimization method for
accurate parameter determination. This method establishes an array of local minima best fits
by initializing a fixed number of parameter conditions that span the parameter space. The iden-
tified solution associated with the best fit quality is extracted from the local array and stored as
the relative global best fit. This method is first applied successfully to synthetic data, then it is
applied to several materials and several illumination wavelengths. This method proves to reduce
manual parameter adjustments, is equally weighted across incident angles, helps define param-
eter stability within a model, and consistently improves fit quality over the high-error local mini-
mum best fit from lsqcurvefit by an average of 71%. © The Authors. Published by SPIE under a
Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or
in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.OE.60.9
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1 Background

Light reflected off surfaces can be modeled according to the direction of the incoming light, light
direction upon reflection, and surface normal. Such a description is widely employed in scene
generation, medical imaging, multi-layer color printing, resource monitoring, weather modeling,
and paint development industries.1–7 For a complete dataset, one must make assumptions about
the direction, magnitude, and wavelength dependency of light reflection off the observed
material. Such a reflection description is given by a bidirectional reflectance distribution function
(BRDF). The BRDF is intended to explain the reflection hemisphere only (the transmission
hemisphere is handled separately when applicable but is beyond the scope of this paper), and
to be independent of the overall brightness of the illumination. The BRDF, fr, is defined as the
ratio of the reflected radiance (Ls) to the incident irradiance (Ei) as

8

EQ-TARGET;temp:intralink-;e001;116;167frðω̂i; ω̂s; λÞ ¼
dLsðω̂i; ω̂s; λÞ
dEiðω̂i; λÞ

; (1)

where fr gives the reflectance per solid angle in a given direction in spherical coordinates in
units of sr−1. The wavelength, λ, is mentioned here for completeness, as the surface parameters
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relative to the wavelength are important, but will not be further considered in this work since it
deals with fitting BRDF data that is typically taken with a laser assumed to be at a single wave-
length. Incident and scattered vectors are given in spherical coordinates defined with respect to
the surface normal by ω̂i and ω̂s, respectively. This convenient description allows the develop-
ment of reflectance models in terms of illumination and observation geometry. The BRDF is
most commonly used in conjunction with the Rendering Equation. The reflection portion of
the rendering equation at an intersection point with a material is9

EQ-TARGET;temp:intralink-;e002;116;651Ls ¼
Z
Ωþ

frðω̂i; ω̂sÞLiðω̂iÞ cos θi dω̂i; (2)

where Li is the incident radiance, Ls is the reflected radiance, and Ωþ represents the reflection
hemisphere.

For the simplest BRDF, assume a Lambertian surface. The BRDF, fr, is related to the unitless
hemispherical reflectance, ρ, as10

EQ-TARGET;temp:intralink-;e003;116;559fr ¼
Ls

Ei
¼ ρ

π
; (3)

where Eq. (3) defines such a material to have a perfectly diffuse BRDF, independent of illumi-
nation or observation geometry. For monochromatic light incident on an idealized mirror surface,
reflection behaves specularly and the angle of incidence equals the angle of reflection.

In practice, materials are not accurately described by a purely diffuse nor purely specular
model, but can be well characterized as having both diffuse and specular components.
These contributions can come from surface reflection or volumetric scatter within the material.7

BRDF models may further separate the directional volumetric term from the surface and
Lambertian terms leading to a universal BRDF form given as7

EQ-TARGET;temp:intralink-;e004;116;419frðω̂i; ω̂sÞ ¼ ρsSðω̂i; ω̂sÞ þ ρvVdðω̂i; ω̂sÞ þ
ρd
π
; (4)

where ρs is the surface fitting parameter, ρv is now the directional volumetric fitting parameter,
Vd is the directional volumetric scatter function, and ρd is the diffuse fitting parameter following
Lambertian scatter. The last two terms constitute the volumetric scatter.

One common model class that takes this approach is the microfacet model.1,6,7 This class of
geometric optics-based models is typically wavelength agnostic and dependent on the surface
structure of the material, which is defined in the model as a distribution of infinitesimally small
specularly reflecting facets. In general, microfacet models take the form,7

EQ-TARGET;temp:intralink-;e005;116;296frðω̂i; ω̂sÞ ¼ ρsPðω̂i; ω̂sÞDðω̂hÞFðθdÞGðω̂i; ω̂sÞσðθi; θsÞ þ ρvVdðω̂i; ω̂sÞ þ
ρd
π
; (5)

where the surface reflection function S from Eq. (4) is the product of Pðω̂i; ω̂sÞ, a model specific
prefactor accounting for terms not found in other models of similar form, θd is the angle of
incidence in microsurface orientation relative to the overall surface orientation, Dðω̂hÞ is the
microsurface normal distribution, FðθdÞ is the unpolarized form of Fresnel reflection term,
Gðω̂i; ω̂sÞ is a geometric attenuation term, and σðθi; θsÞ is a cross section conversion term.
Wanner and others provide an overview of kernel based BRDF models and Butler provided
a robust categorization of BRDF microfacet BRDF models in 2014.3–5,7,11

The Cook–Torrance model is a common microfacet BRDF model and takes the form,7,12

EQ-TARGET;temp:intralink-;e006;116;161frðω̂i; ω̂sÞ ¼ 4ρsDbðθhÞFðθdÞGcðω̂i; ω̂sÞσðθi; θsÞ þ
ρd
π
: (6)

Referencing Eq. (5), prefactor P is equal to four in the Cook–Torrance model and can be
ignored by scaling the surface parameter by 1∕4 to remove the prefactor entirely. The cross
section conversion term is defined as
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EQ-TARGET;temp:intralink-;e007;116;735σðθi; θsÞ ¼
1

4 cos θi cos θs
; (7)

which converts the surface scatter from spherical scatter, common in physics, to planar scatter
more representative of a typical interface. DbðθhÞ is the Beckmann (Gaussian) distribution of
microfacet surface-normal orientations relative to the macroscopic surface orientation with

EQ-TARGET;temp:intralink-;e008;116;665DbðθhÞ ¼
1

πm2 cos4 θh
exp

�
−
�
tan θh
m

�
2
�
; (8)

wherem is the surface tangent angle parameter of the distribution (technically only true for rough
surfaces; for polished surfaces it is more complex but the microfacet model begins to break down
anyway in this limit13). θh is the scattered angle rotated in the microfacet normal geometry. FðθdÞ
is the unpolarized form of Fresnel reflection and Gcðω̂i; ω̂sÞ is the Blinn geometric function
derived from shadowing and obscuration off V-shaped grooves is given as14

EQ-TARGET;temp:intralink-;e009;116;560Gcðω̂i; ω̂sÞ ¼ min

�
1;

�
2 cos θh cos θs

cos θd

�
;

�
2 cos θh cos θi

cos θd

��
; (9)

where the first term is used when no geometric attenuation occurs; the second term occurs for
surfaces displaying obscuration, meaning the microfacet’s angle of reflection is large with
respect to the macrosurface normal; and the third term describes surfaces displaying shadowing,
meaning geometric attenuation occurs due to shadowing from microfacets at large angles with
respect to the macrosurface normal. Cook–Torrance, like many other microfacet models, does
not include a directional volumetric scatter term (ρv ¼ 0).

One can then apply the full BRDF using the full rendering equation, given as15

EQ-TARGET;temp:intralink-;e010;116;431Lsourceðω̂s; λÞ ¼ Lselfðω̂s; λÞ þ
Z
Ωþ

frðω̂i; ω̂s; λÞLiðω̂i; λÞ cos θidω̂i; (10)

to define the observed source radiance (Lsource) in terms of both the self-emitted component
(Lself ) and the surrounding incident radiance (Li) scattered according to the BRDF model.
Accurately defining the behavior of the BRDF for a specific material is commonly dependent
on accurate anchoring of model parameters to scatterometry measurements.16

2 Motivation

One standard method for BRDF model fitting to scatterometry measurements uses a non-linear
least squares curve fit (lsqcurvefit) function in MATLAB®.2,6,17,18 This function reads in an initial
parameter guess and finds final parameters that correspond to the best non-linear fit to the speci-
fied model for the provided data. The number of iterations in the optimization depends on the
fitting tolerance. Fit performance is partially based on the accuracy of the initial guess, which can
be done with parameter tweaking (i.e., human-assisted adjustment of parameters that result in
substantially better fits) to manually fit a model to each dataset. However, this method will only
converge to one local minimum for that particular set of initial conditions.19 Two independent
initial guesses may converge to two unique local minima that provide differing fit quality.
Additionally, manually fitting a model can bias the initial guess to a particular incident angle,
making this method largely ineffective for BRDF measurements across multiple incident angles.
A similar nonlinear fit function is commonly implemented when fitting BRDF parameters in
Mathematica® software.20–22 The FindFit and NonlinearModelFit functions minimize a norm
of the residual function to give estimated model parameters. As is often the case in nonlinear
fitting techniques, there may be several local minima and determining the global minimum can
be difficult and computationally expensive.20

Figure 1 shows example scatterometry data of a material illuminated at incident angles of
30 deg and 60 deg. The data are fit with the Cook–Torrance model given in Eq. (6) using three
independent initial parameter estimates and the common lsqcurvefit approach. An ideal fitting
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routine converges to one solution with globally minimized fit error and is independent of the
quality of the initial parameter estimate. However, Fig. 1 shows that using the standard fit
approach converges to three different local minima “best” fit solutions, each with unique model
parameter estimates resulting in dramatically different fits.

Accordingly, it is desirable to reduce manual manipulation and obtain a global minimum for
the optimal fit. Doing so can help determine a true best fit for the model and improve upon the fit
performance of a model. This paper compares the standard fit routine with a recursive optimi-
zation method tailored to interrogate an array of unique local minima for a given model and
dataset. A modified Cook–Torrance model with six fit parameters (to be described in the next
section) is used to compare fit quality results using the standard fit approach and the recursive fit
approach to 15 datasets, although the number of parameters to fit does vary with choice of BRDF
model; some common models with number of parameters are given in the referenced source.7

3 Methodology

Fifteen measurements of nine samples were made at incident angles ranging from θi ¼ 0 deg to
θi ¼ 85 deg. Five different illumination wavelengths, one at a time, provided spectral sampling at
0.325 μm (UV), 0.6328 μm (VIS), 1.06 μm (NIR), 3.39 μm (MWIR), and 10.6 μm (LWIR); see
Table 3. Not all samples were illuminated at all wavelengths. Measurements for this work were
conducted at the optical measurements facility (OMF) at the Air Force Research Laboratory,
Materials and Manufacturing Directorate. Samples are primarily paint coatings with glossy (specu-
lar) or matte (diffuse) visual characteristics. Samples were chosen to exhibit scatter with a variety of
volumetric scatter components.6,18 The incident angles at which data were taken are shown in
Table 3; for each incident angle, several scattered angles that are in the plane of incidence were
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Fig. 1 (a), (b), and (c) each show BRDF model fit quality using the standard approach on identical
data but three independent initial parameter estimates. Standard curve fitting converged to three
unique local minima. The set shows that only local optimization occurs and final fit quality is based
on the quality of the initial parameter estimate.
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sampled to obtain the BRDF value. The data obtained was polarimetric, but in this work we are
using an unpolarized BRDF by averaging the s and p polarization BRDF components.

The recursive fit method is anchored to data using a modified Cook–Torrance model.
The Cook–Torrance model is commonly given without a directional volumetric scatter term;
accordingly, this study includes a semi-empirical directional volume term empirically based
on subsurface scatter given as

EQ-TARGET;temp:intralink-;e011;116;663fveðω̂i; ω̂sÞ ¼ ρvDbðθheÞFðθdeÞ; (11)

where θde and θhe are modified incident and scattered angles rotated for microsurface coordi-
nates to aid in forming a volumetric backscatter lobe. These variables are related to their more
commonly used forward scatter variables θh and θd but are at ϕ ¼ ϕi instead of ϕ ¼ ϕi þ π,
resulting in a secondary backscatter peak centered about ϕs ¼ ϕi that is observed in the data
obtained from the Air Force Research Laboratory. Given Δϕ is the difference between the inci-
dent, ϕi, and scattered, ϕs, azimuthal angles, one may conveniently allow ϕi to be zero for all
cases so that Δϕ is equivalently expressed as ϕs. θde and θhe are then given as

EQ-TARGET;temp:intralink-;e012;116;549θde ¼
1

2
cos−1½cos θi cos θs þ sin θi sin θs cosðϕ − πÞ� (12)

and

EQ-TARGET;temp:intralink-;e013;116;499θhe ¼ cos−1
�
cos θi þ cos θs

2 cos θde

�
(13)

thereby defining the full model as

EQ-TARGET;temp:intralink-;e014;116;446fmðω̂i; ω̂sÞ ¼ ρsσðθi; θsÞDbðθhÞFðθdÞGcðω̂i; ω̂sÞ þ
ρd
π
þ ρvDbðθheÞFðθdeÞ: (14)

For each dataset, an array of unique best fit local minima is determined by initializing 250
sets of randomized parameter values that span the defined parameter bounds given in Table 1.

A non-linear least squares fit is applied for each of the initial conditions, and each converges
to its respective locally optimized fit. Each incident angle is fit simultaneously and the error is
calculated for each local minimum.

The hardware used for the nonlinear curve fit was a standard off-the-shelf MacBook Pro
laptop purchased in 2018. Run time varied with dataset being analyzed, but did not exceed
10 minutes. No attempts were made to optimize the code for speed, and the code was not written
to take advantage of parallel processing, so this execution time could be greatly enhanced with
some effort, as the solution presented is trivially parallel.

Fits are calculated by fitting to the natural log of the measured BRDF data. BRDF often varies
several orders of magnitude and drops off very quickly with deviations from the specular peak;
therefore, the logarithmic method allows for an emphasized fit over all observation angles, not
just the model’s forward specular peak.6,7,18 Fitting performance was based on the square of the
mean standard error (MSE2) over all observation angles. MSE is calculated as

Table 1 Upper and lower parameter bounds used in the recursive fitting algorithm.

Parameter Symbol Lower bound Upper bound

Diffuse fit ρd 0 1

Surface fit ρs 0 100

Volume fit ρv 0 100

Facet slope dist. m 0.00001 10

Real index n 1 100

Imaginary index k 0 100
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EQ-TARGET;temp:intralink-;e015;116;735MSE ¼ 1

n
k lnð~xÞ − lnð~fÞk; (15)

where ~x is the measured BRDF data, and ~f is the BRDF model given in Eq. (14). To specify error
within an observation sub-region, the Euclidean norm with n elements given as

EQ-TARGET;temp:intralink-;e016;116;676k lnð~xÞ − lnð~fÞk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
k¼1

j lnð~xkÞ − lnð~fkÞj2
s

; (16)

can be squared allowing error sub-regions to be conveniently expanded and described with the
MSE2 as

EQ-TARGET;temp:intralink-;e017;116;600ðMSEÞ2 ¼ 1

n2

�Xn
k¼1

j lnð~xkÞ − lnð~fkÞj2
�
: (17)

This study evaluates MSE2 over the full observation region.
From the array of local minima, the total number of unique local minima is determined.

Randomly initializing parameters provides unique unbiased sampling of the parameter space
allowing insight to the various local minima that could be observed if one were to use the stan-
dard single fit method. The single fit providing the lowest fit error is taken as the relative global
best fit. The relative global best fit parameter set is stored and acts to define the final solution for
comparison across materials. A summarized graphical outline of the described parameter fitting
algorithm is shown below in Fig. 2.

To compare effectiveness of the recursive method across datasets, multiple metrics are con-
sidered. First, the total number of unique local minima is identified, indicating the confidence of

START

STOP

Create randomized initial parameter value set

Apply non-linear least squares fit using initial parameter values

Extract array of unique local minima

Calculate and store local minima fit error

Extract parameter values with lowest fit error (relative global best fit)

Store fit parameter set

No

Yes (local minimum identified)

Fit convergence to local minimum

250 instances converged
No

Yes 

Fig. 2 Algorithm flow chart to determine microfacet BRDF parameters from an array of local
minima.
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any one solution if the standard single fit method were utilized. Second, the fit quality of the local
fit with the highestMSE2 is compared to the fit quality of the local fit with the lowestMSE2. This
identifies the fit variance for each material. Finally, an improvement potential is determined
given as the percentage of reduced error between the best and the worst fitting local minima.
This is the realized improvement if one were to fit data using the standard single fit method with
convergence to the worst local minimum, compared to using the recursive optimization method,
which identifies the relative global best fit solution.

4 Development of Methodology

Prior to application on real BRDF measurement data, the fitting algorithm was validated
with three different test datasets that were created from idealized BRDF’s. Each test simulated
observation of −85 deg < θs < 85 deg. The BRDF used for test data 1, shown on the left plot in
Fig. 3, has incident light at θi ¼ 45° and known parameters of ρd ¼ 0.10, ρs ¼ 10.00, ρv ¼ 0.01,
m ¼ 0.1, n ¼ 3.00, and k ¼ 1.00. From the ideal model, random error ranging between 0% and
10% was placed on the ideal model at every 1 deg of observation. The resulting test data 1 is
shown on the right in Fig. 3.

Test data 1 was fit to the modified Cook–Torrance model using the recursive optimization
algorithm where 13 local minima were identified, 12 of which are very closely spaced and dif-
ficult to distinguish visually but are as a whole, the set of clearly poor fits shown on the left plot
in Fig. 4. Interestingly, this shows that the naive technique of using the previous best fit as the
initial guess for a subsequent curve fit is not likely to succeed, as there is an apparent cluster of
local minima within the vicinity of these 12 poor quality fits, whereas the best fit contains
radically different fit parameters not likely to be converged on if such an approach is used.
The parameters associated with the best local fits were stored and used for the initial parameters
in a final fit. The right plot in Fig. 4 shows the fit solution extracted from the set of local minima.
The final fit converged to parameter values of ρd ¼ 0.10, ρs ¼ 11.27, ρv ¼ 0.01, m ¼ 0.1,
n ¼ 2.94, and k ¼ 0.90. Large changes in ρs result in small changes in the BRDF for this par-
ticular test BRDF configuration; therefore, parameter ρs varied more significantly from the
known value with little impact to the final solution. All but the complex component of the index
of refraction were fit to within 10% of the known parameter value, whereas ρd, ρv, and m con-
verged to the exact parameter values in the known BRDF.

When examining the entire table of fits for this set of simulated data, the minimum and
maximum parameters are summarized in Table 2. In each case, at least 1 local minimum con-
verged to the Min Converged and Max Converged parameters. The Best Fit parameters are from
a single local minimum, which contained the minimum residual error overall out of all 250 curve
fits and was quite different in value from the other 12 local minima. Of substantial note is the
extreme range in parameters that resulted in a best fit. It is also worth noting that them parameter
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Fig. 3 (a) Idealized test data 1 without error and (b) final test data 1 with random error ranging
between 0% and 10% applied to the ideal data.
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(Facet slope dist.) is used in a Gaussian distribution, and thus its variation has substantial effect
on the BRDF fit quality.

The fitting algorithm was similarly validated using test data 2 shown in Fig. 5. The BRDF
used for test data 2, shown on the left plot in Fig. 5, is configured for incident light at
θi ¼ 80 deg to examine the algorithm’s resilience with near grazing illumination conditions.
The known parameters are ρd ¼ 0.20, ρs ¼ 1.50, ρv ¼ 0.02, m ¼ 0.15, n ¼ 1.15, and
k ¼ 0.9. Random error was again placed on the ideal model resulting in test dataset 2 shown
on the right in Fig. 5.

Test data 2 was fit to the modified Cook–Torrance model using the recursive optimization
and found six unique local minima. Each is shown in blue in the left plot of Fig. 6. The right plot
in Fig. 6 shows the relative global minimum solution extracted from the set of local minima.

The dataset 2 solution converged to parameter values of ρd ¼ 0.20, ρs ¼ 3.37, ρv ¼ 0.02,
m ¼ 0.15, n ¼ 1.01, and k ¼ 0.87. Again, large changes in ρs result in small changes in the
BRDF, therefore parameter ρs varied more significantly from the known value with little impact
to the fit quality of the final solution. All other parameters converged to within 15% of the known
parameter value, whereas ρd, ρv, and m converged to the exact known parameter values.

Test data 3 used BRDF shown on the left plot in Fig. 7. This set is configured for incident
light at θi ¼ 30° to examine the algorithm’s resilience with near normal illumination conditions.
The parameters are also adjusted to give a low volumetric component and are known to be
ρd ¼ 0.15, ρs ¼ 1.00, ρv ¼ 0.001,m ¼ 0.005, n ¼ 1.10, and k ¼ 0.86. Random error was again
placed on the ideal model resulting in test dataset 3 shown on the right in Fig. 7.

Table 2 This table shows max, min, best fit, and actual values of parameters used in simulated
data for test data set 1. The max and min values were all returned as a supposed “best fit” from a
single iteration, whereas the best fit values are from a single iteration using parameters from the
overall minimum error.

Parameter Symbol Min converged Max converged Best fit Actual

Diffuse fit ρd 2.29 × 10−14 0.109 0.100 0.100

Surface fit ρs 2.498 × 10−14 47.51 11.27 10.00

Volume fit ρv 0.0052 72.5 0.01 0.01

Facet slope dist. m 0.10 9.995 0.10 0.10

Real index n 1.00 10.5 2.94 3.00

Imaginary index k 0.000118 5.16 0.900 1.00
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Fig. 4 Plot (a) shows the fitting algorithm finds multiple local fits to test dataset 1. The relative
global best fit is identified from the local minima and extracted as the global solution as
shown in (b).
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Fig. 6 Plot (a) shows the fitting algorithm finds multiple local fits (solid lines) to test dataset 2
(asterisks). The relative global best fit is identified from the local minima and extracted as the
global solution shown in (b).
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Fig. 7 Idealized test data 3 without error (a) and final test data 3 with random error ranging
between 0% and 10% applied to the ideal data (b).

–80 –60 –40 –20 0 20 40 60 80

s
 (Deg.)

10-1

100

101

102

B
R

D
F

 (
1/

sr
)

–80 –60 –40 –20 0 20 40 60 80

s
 (Deg.)

10–1

100

101

102

B
R

D
F

 (
1/

sr
)

(b)(a)

Fig. 5 (a) Idealized test data 2 without error and (b) final test data 2 with random error ranging
between 0% and 10% applied to the ideal data.
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Test data 3 was fit to the modified Cook–Torrance model using the recursive optimization
and found four unique local minima. This dataset has few datapoints at the forward and back-
scatter specular peaks causing three of the four local minima to ignore these as outliers.
Accordingly, these three local minima converge to a Lambertian BRDF, which is clearly incor-
rect. Recursive optimization however identified one specular description that far outperforms the
fit quality of the other local minima. Each unique local minimum is shown as a solid blue line in
the left plot of Fig. 8. The right plot in Fig. 8 shows the final solution extracted from the set of
local minima.

The dataset 3 solution converged to ρd ¼ 0.15, ρs ¼ 2.37, ρv ¼ 0.001,m ¼ 0.005, n ¼ 1.02,
and κ ¼ 0.92. Consistent agreement with the known parameter values is again observed with this
third dataset. All but ρs converged to within 9% of the known values, whereas ρd, ρv, andm again
converged to the exact parameter values. Consistently accurate m parameter determination is
significant for material to material identification. With validation of the methodology using test
datasets, the recursive optimization approach was applied to fit the modified Cook–Torrance
model to each of the 15 real datasets described at the beginning of this section.

5 Results with Measured Data

Following the recursive optimization approach, each of the 15 datasets were fit with the modified
Cook–Torrance model. Results show that the standard single fit approach may converge to one of
multiple possible local minima, that is, there were not any instances of consistent convergence to
only one fit solution. This suggests that the standard single fit method should not be used for
comparing multiple models as the quality of the local fit will be unclear. Figure 9 shows the
BRDF model fit to PNT65VIS data and the four unique local minima identified. Recursive opti-
mization extracts the relative global solution with the highest fit quality and is shown on the right
in Fig. 9. Depending on the initial parameter estimates, the standard non-linear least squares fit
will converge to one of four locally optimized minima, three of which fail to represent the specu-
lar backscatter peak. Accordingly, recursive optimization improves fit quality 76% over the local
fit with the poorest fit quality, defined as the high error fit.

Figure 10 shows the BRDF model fit to PNT66MWIR data and the six unique local minima
identified. Five minima agree at near-normal observations but provide unique fits at near-grazing
observations. Additionally, five of the six local minima underestimate the forward scattered
BRDF and underestimate the backscatter BRDF. Recursive optimization extracts the relative
global fit with the highest fit quality and is shown on the right in Fig. 10. Recursive optimization
shows improvement potential of 87% over the high error local fit.

Figure 11 shows the BRDF model fit to PNT66UV data and 49 unique local minima iden-
tified. Each local minimum is determined by a minimum of 1% difference in MSE2 and con-
firmation of unique parameter values found in that fit. This example again demonstrates that fit
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Fig. 8 Plot (a) shows the fitting algorithm finds multiple local fits (solid line) to test dataset 3 (aster-
isks). The relative global best fit is identified from the local minima and extracted as the global
solution as shown in (b).
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Fig. 10 Recursive optimization identified six local minima, shown in solid blue and solid black
lines, (a) for PNT66MWIR and (b) the extracted relative global best fit solution. About 87%
improvement potential is observed.
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Fig. 9 Recursive optimization identified four local minima, shown in solid blue and solid black
lines, (a) for PNT65VIS data shown in plot and (b) the extracted relative global best fit solution
in plot. About 76% improvement potential is observed.
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Fig. 11 Recursive optimization identified 49 local minima, shown in solid blue and solid black
lines, for (a) PNT66UV and (b) the extracted relative global best fit solution. About 87% improve-
ment potential is observed.
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quality is likely to vary for this material when the standard single fit method is used.
Additionally, establishing parameter values to associate with this material will prove difficult
without identification of possible local minima. The majority of local minima at θi ¼ 30° under-
estimate the BRDF at near normal observations and overestimate the BRDF at grazing obser-
vations. Recursive optimization extracts the relative global solution with the highest fit quality
and is shown on the right in Fig. 11. Recursive optimization shows improvement potential of
87% over the high error local fit.
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Fig. 12 Recursive optimization identified three unique local minima, shown in solid blue and solid
black lines, for (a) STD00698 and (b) the extracted relative global best fit solution. About 18%
improvement potential is observed.

Table 3 An average of seven unique local minima exist for a given set of initial conditions using
the standard method. Recursive optimization has the potential to improve fit quality an average
of 71% over the high error locally minima. Incident angles in the BRDF data obtained from the
Air Force Research Laboratory and used for the study are also listed.

Material θi (Deg.)
Unique local

minima High error Low error
Improvement

potential

65 MWIR 30, 60 9 2.05E−04 5.73E−05 0.72

65 LWIR 30, 60 3 1.80E−03 5.81E−04 0.68

65 NIR 30, 60 2 8.57E−06 3.04E−06 0.64

65 UV 30, 60 2 3.11E−05 2.09E−05 0.33

65 VIS 30, 60 4 1.58E−05 3.75E−06 0.76

66 MWIR 30, 60 6 1.40E−03 1.83E−04 0.87

66 NIR 30, 60 8 6.27E−04 4.47E−05 0.93

66 UV 30, 60 49 3.69E−04 4.73E−05 0.87

36375 NIR 40, 60, 80 4 8.15E−05 1.28E−05 0.84

36495 VIS 30, 60, 85 6 6.20E−05 4.22E−05 0.32

01006 NIR 20, 60, 75 3 4.50E−03 2.07E−04 0.95

01014 NIR 20, 60, 75 6 1.24E−02 3.40E−03 0.73

STD00696 0, 20, 40, 60, 80 2 6.40E−04 4.72E−05 0.93

STD00698 0, 20, 40, 60, 80 3 1.28E−04 1.05E−04 0.18

STD00699 0, 20, 40, 60, 80 3 1.90E−03 1.14E−04 0.94
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Figure 12 shows the BRDF model fit to STD00698 data and three unique local minima iden-
tified. All local minima agreed well at near normal observations but differed at grazing obser-
vations. The recursive optimization solution shown on the right in Fig. 11 provides improvement
potential of 18% over the high error local fit.

Results for the remaining 11 datasets are summarized in Table 3. The total number of unique
local minima identified is provided along with the MSE2 of the best fit (low error) solution and
the local fit with the poorest fit (high error).

In all datasets multiple unique local minima were identified. PNT65 MWIR was not shown
here but provided the second highest number of unique local minima at nine. Additionally,
PNT01006 NIR showed the largest improvement potential of 95%. A visual comparison of
improvement potential across all datasets is provided in Fig. 13.

6 Conclusion

An unsupervised, yet reliable recursive optimization routine was proposed as an improved
approach for consistent determination of BRDF parameter values. This method improves upon
the standard single fit approach that is susceptible to sub-optimal fit conclusions due to local
minimization constraints that may result with a naive unsupervised routine, as was demonstrated
in this paper using synthetic data. A modified Cook–Torrance model with a semi-empirical
directional volume term was used with the recursive optimization method and validated against
three synthetic test datasets, as well as implemented on scatterometry measurements of several
materials. On average, seven unique local minima were identified in the datasets and the relative
global best fit solution was determined. The identified best fit using the algorithm proposed here
provided 71% improvement potential over the standard fit approach.

This method proves to be stable as improvements were observed over all provided material
types and illumination wavelengths. Recursive optimization does not require manual tweaking
of the model parameters prior to fitting nor after a local minimum is found. The method is
equally weighted across incident angles since manual fitting for initial parameter estimates
is not needed. Additionally, recursive optimization helps define fit stability for any one particular
model as it provides a range of locally optimized minima within the defined parameter
space. Finally, confidence in fit quality is improved allowing for accurate model to model
comparison.

Although we determined 250 iterations were best for this particular BRDF model employed,
the reader should be aware that we reached this number by adding iterations until new unique
local minima were no longer obtained, and that result depends upon the BRDF model being
used. In our case, we found the BRDF model in this paper had as many as 49 unique local
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Fig. 13 On average recursive optimization provides 71% fit quality improvement over the high
error local minima.
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minima (see Table 3). The same procedure will otherwise work for other models, but to obtain
the number of iterations for another BRDF model, one should iterate repeatedly until no new
unique local minima are found. However, this work has demonstrated that one should not use a
single iteration of lsqcurvefit to determine BRDF parameters, as it may fail even with synthetic
data when a small amount of noise is added!
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