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ABSTRACT

Percutaneous image - guided ablative therapies using thermal energy sources such as
radiofrequency, microwave, high intensity focused ultrasound, cryotherapy, and laser
have received much recent attention as minimally -invasive strategies for the treatment of
focal malignancy in the liver. Potential benefits of these techniques include the ability to
ablate tumor in non -surgical candidates, reduced morbidity as compared to surgery, and
the potential to perform the procedure on an outpatient basis. This article will present an
overview of the principles and techniques used for thermal ablation, as well as review the
results of published clinical trials.
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1. INTRODUCTION

Advances in diagnostic imaging and fine needle biopsy technique have facilitated the
development of percutaneous, image - guided therapies for the treatment of focal hepatic
neoplasms [1, 2]. The development of these new and "minimally- invasive" techniques
has the potential to dramatically alter patient outcomes, since existing therapies either are
associated with significant morbidity and mortality, or have limited efficacy. For
example, hepatocellular carcinoma is often seen in the setting of hepatic cirrhosis,
especially in high incidence areas such as Italy and the Far East. In these patients, liver
dysfunction and associated coagulopathy combine to make surgical resection an
unacceptably risky procedure. The development of in -situ ablative therapy using
percutaneous ethanol instillation (PEI) has already provided an acceptable alternative to
surgery for many of these patients [3, 4].

The rationale for local treatment of hepatic metastases is somewhat different, being based
primarily on the success which has been achieved using a surgical approach. Without
resection, for example, the prognosis for patients with hepatic metastases from colorectal
carcinoma is dismal, with 5 -year survival reported to be less than 1% and median
survival estimated at 9.6 months [5]. Unfortunately, systemic chemotherapy has been
relatively unsuccessful in significantly improving patient outcomes, with the result that
hepatic resection (metastasectomy) is the only widely available curative treatment for
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these patients. Recent reports, most notably a large multi -institutional study involving
859 patients treated at 24 institutions and others [6 -11], have documented 5 -year
survivals of 25 -90% following the resection of 4 or fewer hepatic metastases. Some of
these reports may have been overly optimistic, however, most authors now believe that
30 -35% 5 -year survival can be achieved with proper patient selection [12 -14]. However,
despite its success in improving overall patient survival, metastasectomy is associated
with significant morbidity, as well as a perioperative mortality rate of 2 -10% [5 -14].
Furthermore, only a small fraction of patients with hepatic metastases can actually
undergo metastasectomy as they are either deemed poor surgical risks, or the number and
distribution of their tumors does not permit complete resection while at the same time
leaving behind an adequate volume of normal liver to support life. Nevertheless, the
success of hepatic metastasectomy in certain patients has lead many investigators to
speculate that similar results might be obtained with an effective in -situ ablative
technique. In addition, because it would be less invasive than surgical resection, such a
technique could be applicable to many patients who would not be considered for
metastasectomy.

Percutaneous image -guided therapies for hepatic neoplasms can be divided into two
broad categories: 1) direct infra- tumoral injection of compounds such as ethanol, hot
saline, and acetic acid in an attempt to induce cellular death, and 2) thermally mediated
techniques such as radiofrequency ablation (RF), interstitial laser photocoagulation (ILP),
microwave therapy, or cryotherapy. An additional transcutaneous ablative technique,
high -intensity focal ultrasound (HIFU) has been used with limited success in organs other
than the liver, but may ultimately have a role in the treatment of hepatic lesions if certain
limitations can be overcome.

While the clinical efficacy of some of these techniques (such as percutaneous ethanol
instillation (PEI) for the treatment of hepatocellular carcinoma) has been clearly
established, experience with the remainder (i.e., thermal ablation using energy sources) is
considerably more preliminary, and an assessment of their safety and efficacy cannot be
adequately performed until the results of additional clinical trials are available. Many of
these percutaneous techniques involve nascent, but rapidly developing technologies,
where innovations are occurring at a rapid pace, and published results may not fully
represent the "state -of- the -art". In this review, we will describe each of the techniques
for thermal ablation including radiofrequency (RF), laser, microwave, ultrasound, and
cryotherapy; and present preliminary laboratory and/or clinical data, as available. The
role of injection therapies such as PEI, and other minimally -invasive therapies such as
chemoembolization are, for the most part, beyond the scope of this article.

2. OVERVIEW OF THERMAL ABLATION THERAPY

The main aim of thermal tumor ablation therapy is to destroy an entire tumor using heat
to kill the malignant cells in a minimally invasive fashion without damaging adjacent
vital structures. This often includes the treatment of a 0.5 to 1 cm margin of apparently
normal liver tissue adjacent to the lesion in order to eliminate microscopic foci of disease
and the uncertainty which often exists regarding the precise location of actual tumor
margins. Therefore, it is necessary to understand how heat interacts with malignant and
benign tissue to induce cell death.
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Cellular homeostasis can be maintained with mild elevation of temperature to
approximately 40° C. When temperatures are increased to 42 - 45° C (hyperthermia),
cells become more susceptible to damage by other agents such as chemotherapy and
radiation [15, 16]. However, even prolonged heating at these temperatures will not kill
all cells within a given volume, as continued cellular functioning and tumor growth can
be observed following relatively long exposure to these temperatures. When
temperatures are increased to 46° C for 60 minutes, irreversible cellular damage occurs
[17]. Increasing the temperature only several degrees to 50 - 52° C markedly shortens the
time necessary to induce cytotoxicity (4 - 6 minutes) [18]. Between 60 - 100° C, there is
near instantaneous induction of protein coagulation which irreversibly damages key
cytosolic and mitochondrial enzymes, as well as nucleic acid - histone protein complexes
[19, 20]. Cells experiencing this extent of thermal damage most often, but not always,
undergo coagulative necrosis over the course of several days. The term "coagulation
necrosis" has therefore been used to denote irreversible thermal damage to cells whether
or not the ultimate manifestations of cell death fulfill the strict histologic criteria of
coagulative necrosis. Temperatures greater than 105° C result in tissue boiling,
vaporization, and carbonization. These processes usually retard optimal ablation due to a
resultant decrease in energy transmission [18]. Thus, a key aim for ablative therapies is
achieving and maintaining a 50 - 100° C temperature range throughout the entire target
volume.

2.1 Sources of thermal energy

It is important to remember that tumor cells can be equally effectively be destroyed by
cytotoxic heat from different sources. As long as adequate heat can be generated
throughout the tumor volume, we will accomplish our objective of eradicating the tumor.
Multiple energy sources have been used to provide the heat necessary to induce
coagulation necrosis. Electromagnetic energy has been used in the form of both
radiofrequency and microwaves [21, 22]. Photocoagulation uses intense pulses of light
produced by a laser as the energy source [23, 24]. In a similar vein, high intensity
focused ultrasound uses sound energy to produce heat [25]. Additionally, direct injection
of heated fluids including saline, ethanol, and contrast has been used to induce
coagulation by direct thermal contact [26].

For most methods of thermal ablation, energy has been applied percutaneously using
needle- shaped applicators. These high doses of energy usually concentrate around the
applicator and require heat conduction through the tissue from this local thermal
reservoir to coagulate deeper tissues. For RF, radio waves emanate from the non -
insulated distal portion of the electrode. Heat is produce by resistive forces (i.e., ionic
agitation) surrounding the electrode as the current flows to ground, usually a foil pad
attached to the patient's back or thighs. For microwave, needle shaped electrodes
function as an antenna which concentrates energy about the applicator. Polar molecules
in the tissue attempt to align with the electromagnetic field vectors. This rapid molecular
movement is resisted by friction which induces heating the tissue. For photocoagulation,
thin optical fibers which conduct laser energy are placed through needles which are
positioned in the tumor. These bare fibers transmit the intense light into the tissue where
it is converted into heat. For both microwave and laser, the depth of energy penetration
can be altered by altering the frequency of the energy source. Percutaneous probes
containing multiple small piezoelectric transducers can deposit sufficient sound energy to
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heat adjacent tissues. Another potential application of ultrasound energy has been
incorporated into extracorporeal systems of energy delivery. These rely on focusing of
intense energy from an external ultrasound source. Unfortunately, the maximum size for
a single ablative focus has thus far approximated a grain of rice and therefore complex
image -guided systems are necessary to adequately treat larger areas [25]. However,
improvements in technology may ultimately allow for the treatment of larger foci.

2.2 Heat - tissue interactions

To adequately destroy an entire tumor, the entire lesion must be subject to cytotoxic
temperatures. However, there are multiple and often tissue specific limitations which
prevent heating of the entire tumor volume. Most importantly, there is heterogeneity of
heat distribution throughout a given lesion to be treated. For all percutaneous methods,
heat deposition is greatest surrounding the probe with less heat deposited deeper in the
tissues. This is caused by both a rapid fall -off of energy away from the applicator, as well
as poor heat conduction within the tissues. Additionally, the total quantity of energy
which can be deposited into the tissues is limited by tissue boiling and vaporization at
extreme temperatures (105° C). When tissue vaporization occurs gas is formed. For all
methods, this gas serves as an insulator which prevents heat spread. Additionally, for RF
gas formation increases tissue impedance which prevents deposition of heating current.
Thus, energy deposition using a single applicator (i.e., a monopolar RF electrode or a
single laser fiber) produces coagulation measuring only up to 1.6 cm in diameter [27 -
30].

Several strategies have been developed in an attempt to improve tissue - energy
interactions for thermal ablation therapy with the goal of increasing the region of induced
coagulation to enable the treatment of most clinically relevant tumors (i.e., those
measuring greater than 1 - 2 cm in diameter). These can be classified as strategies which
permit an increase in overall energy (amount and rate) deposited, strategies which
improve heat conduction within the tissue, and strategies which decrease tumor tolerance
to heat.

2.2.1 Increasing energy deposition

A common method for increasing energy deposition throughout an entire lesion has been
to repeatedly insert multiple RF, laser, and microwave probes into the tissue to increase
the diameter of induced coagulation [31 - 34]. This approach, however, is both time
consuming and difficult to employ in the clinical setting particularly because multiple
overlapping treatments must be performed in a contiguous fashion (in all three
dimensions) to destroy the entire lesion. Simultaneous application of energy using arrays
can reduce the duration of therapy [35 - 36]. However, the precise positioning of
multiple probes can also be technically challenging. The development of umbrella RF
electrodes with multiple hooked arrays have overcome some of these problems and have
enabled the creation of larger foci of coagulation [31, 37 - 39].

Much recent development has centered on strategies which preferentially cool tissues
nearest the probe in an attempt to increase overall energy deposition. Internally- cooled
electrodes have been used with radiofrequency, microwave, high intensity ultrasound,
and laser [40 - 44]. For internally- cooled devices, two internal lumens permit the
delivery of chilled perfusate to the tip of the electrode, and the warmed effluent to be
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removed to a collection unit outside of the body. This causes a heat sink effect which
removes heat closest to the electrode. Pulsing of energy is another strategy that has been
used with RF and laser to increase the mean intensity of energy deposited. When pulsing
is used, periods of high energy deposition are rapidly alternated with periods of low
energy deposition. If a proper balance between high and low energy deposition is
achieved, preferential tissue cooling occurs adjacent to the applicator during periods of
minimal energy deposition without significantly decreasing heating deeper in the tissue.
Thus, even greater energy can be applied during periods of high energy deposition
thereby enabling deeper heat penetration and greater tissue coagulation [44, 45].
Combination of both internal -cooling and pulsing has been demonstrated as synergistic
with even greater tissue destruction observed than either method alone [46].

2.2.2 Improved tissue heat conduction

Improved heat conduction within the tissues by injection of saline and other compounds
has also been proposed [48 - 50]. The heated liquid spreads thermal energy farther and
faster than heat conduction in normal "solid" tissue. An additional potential benefit of
simultaneous saline injection with RF or microwave is that it increases tissue
conductivity thereby enabling greater current flow. Similarly, amplification of current
shifts using iron compounds, injected or deposited in the tissues prior to ablation have
been used for RF and microwave [49].

Another primary factor which can alter the extent of coagulation necrosis is tissue
composition, as heat conducts through different tissues at various rates [50, 51]. For
example, poor thermal conduction has been documented for bone compared to muscle
[51]. This has been used as an advantage in the treatment of hepatocellular carcinomas
and vertebral body lesions. Livraghi et al. have described the "oven effect" in which
cirrhotic tissue insulates HCC nodules, thereby increasing temperatures within the
targeted tumor during RF therapy [50]. Dupuy et al. [51] have shown that cortical bone
also serves as an insulator thereby enabling treatment of vertebral body lesions without
damaging the spinal cord.

2.3 Strategies which decrease tumor tolerance to heat

Several investigators have demonstrated experimentally the relationship between blood
flow and the extent of coagulation induced by RF ablation in normal tissues and human
intrahepatic tumors [52 - 56]. Computer modeling of the Bio -heat equation demonstrates
that for a given tissue and power deposition, the effects of tissue blood flow predominate
[56]. Empirically, RF- induced coagulation necrosis has been more limited and variable
in -vivo, particularly in clinical practice, as compared to the reproducible results
obtainable in ex -vivo tissues. Coagulation necrosis in -vivo is also often shaped by the
presence of hepatic vasculature in the vicinity of the ablation [52]. Furthermore,
experiments altering hepatic perfusion by mechanical or pharmacological means during
thermal ablation of normal liver and tumors strongly support the contention that
perfusion- mediated tissue cooling is largely responsible for this reduction in observed
coagulation [52 - 53]. A tight correlation between the diameter of RF induced
coagulation and pharmacologically modulated blood flow in normal liver has also been
demonstrated [53]. Recently, Patterson et al. have confirmed the strong predictive nature
of hepatic blood flow on the extent of RF induced coagulation in normal in -vivo porcine
liver using a hooked electrode system [54]. Coagulation created by RF power during
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vascular inflow occlusion was significantly larger than coagulation created with normal
blood flow (35.0 cm3 vs 6.5 cm3; p < 0.001). Additionally, the number of blood vessels
within a 1 -cm radius of the electrode, strongly predicted minimum lesion diameter and
lesion volume. Thus, for in -vivo tissues, a heat -sink effect from flowing blood likely
limits the extent of tissue in which the necessary cytotoxic temperatures to induce
coagulation can be achieved. Thus, in in -vivo tissues a heat -sink effect likely prevents
achieving the cytotoxic temperature necessary to induce coagulation (50 - 60° C) in
highly vascular regions of a tumor (i.e., the peripheral tumor - parenchyma interface).

On the basis of these observations, several strategies for reducing blood flow during
ablation therapy have been proposed. Total portal inflow occlusion (Pringle maneuver)
has been used at open laparotomy [52]. Angiographie balloon occlusion can be used, but
may not prove adequate for intrahepatic ablation given the dual hepatic blood supply with
redirection of compensated flow [52]. Embolotherapy prior to ablation with particulates
that occlude sinusoids such as gel -foam or lipoidol may overcome this limitation [57].
Pharmacologic modulation of blood flow and anti -angiogenesis therapy are theoretically
possible, but should currently be considered experimental. Additional strategies that
decrease tumor tolerance to heat have been proposed, but as of yet are not well studied.
Theoretically, previous insult to the tumor cells by cellular hypoxia (caused by vascular
occlusion or antiangiogenesis factor therapy [i.e., endostatin], or prior tumor cell damage
from chemotherapy or radiation could be used to increase tumor sensitivity to heat.
Synergy between chemotherapeutic agents and hyperthermic temperatures (42 - 45° C)
has already been established [15 - 16].

3. DIAGNOSTIC IMAGING FOR THERMAL ABLATION THERAPY

Diagnostic imaging applications can be thought of as accomplishing three distinct tasks
for thermal ablation procedures. These include targeting of the lesion to be treated (i.e.,
ensuring optimal positioning of the energy applicator during ablation); guidance for
energy deposition for the duration of the treatment plan; and assessment of results at
follow -up. The imaging appearances for laser, microwave, and RF are remarkably similar
for any given organ and degree of tissue heating. Needle -like applicators will all look
approximately the same for any given modality, and coagulation (or heated) tissues
should theoretically appear identical for a given extent of coagulation, regardless of how
it was induced.

3.1 Diagnostic imaging for lesion targeting

Multiple imaging modalities (sonography, CT, and MR Imaging) can be used to guide the
percutaneous placement of thermal energy applicators into the selected target [1, 2].
Because in most cases adequate lesion conspicuity and visualization of the applicator can
be achieved with any of these methods, the decision as to which imaging modality is
selected has often been dictated by personal preference or research interests. Most
image -guided thermal ablation procedures have thus far been performed using
ultrasonography. Benefits touted for sonography include the real -time visualization of
applicator placement, the portability of the technology, nearly universal availability, cost,
and the ability to target and guide ablation therapy using intracavitary, endoluminal
transducers (i.e., for transrectal or transgastric energy application to the prostate or
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abdominal organs). Limitations of sonography include occasional poor lesion
visualization due to a lack of innate tissue conspicuity or overlying bone or gas
containing structures. MR imaging generally provides greatest tumor -to- tissue
conspicuity and the ability to use multiplanar guidance. However, this technology is
relatively expensive, requires specialized ablation equipment that is compatible with a
high magnetic field, and is the least available for general clinical use. CT, and more
recently real -time CT fluoroscopy, have also been used to ensure adequate positioning of
the energy applicator. Though these techniques have not yet been extensively evaluated
(i.e., CT fluoroscopy) it is fair to say that CT falls between ultrasound and MR with
respect to cost, tissue contrast, and complexity. In our clinical practice, we use a
combined approach of CT fluoroscopy and sonography at the same setting to document
optimal RF electrode positioning.

3.2 Diagnostic imaging to guide therapy

In order to prevent under or over treatment of a lesion, it is essential to have accurate and
reliable methods for determining the adequacy of therapy. Thus, there is significant
ongoing investigation into the development of imaging strategies which enable rapid
assessment of the extent of tissue destruction induced by thermal ablation. Despite initial
enthusiasm, gray -scale sonographic findings observed during the thermal ablation
procedure are not sufficiently accurate in predicting the extent of coagulation to guide
thermal therapy [33, 53, 58, 59]. The progressively increasing hyperechogenic focus
which is often seen surrounding the distal portion of the applicator during the application
of energy has been found to represent microbubbles of gas which form in the heated
tissue and does not represent tissue coagulation [60]. This hyperechogenic region can be
variable in size, quite irregular in shape and contour, and often demonstrates complete
resolution within one hour of ablation. Additionally, this intense echogenicity can often
obscure the energy applicator and tumor, increasing the difficulty of repositioning for
further treatment.

Conventional color -flow and power -Doppler sonography have similarly not been found
useful in assessing the extent of induced coagulation [33, 58]. However, in one study
contrast -enhanced color -Doppler sonography using a synthetic microbubble ultrasound
contrast agent was able to achieve 92% accuracy in predicting the extent of coagulation
in VX2 rabbit tumors immediately following RF ablation [61]. Additionally,
sonographic contrast has been used to direct repeat energy application to residual
enhancing (and presumably viable) foci within the treatment zone [62].

For solid organs such as the liver, unenhanced CT scans obtained immediately after
ablation often reveal increased density at the center of the treatment zone which is most
often surrounded by a region of hypoattenuation [31 - 33, 59, 63 - 65]. With the
exception of encapsulated lesions such as hepatocellular carcinomas, the margins of this
outer hypodense zone are often too diffuse to be of sufficient sensitivity to assess therapy.
However, contrast -enhanced CT is quite useful in discriminating between ablated and
residual, viable tumor immediately after thermal ablation as it demonstrates regions of
hypoattenuation devoid of characteristic tumorous or parenchymal enhancement in
treated portions of the tumor. For intrahepatic metastases, the differentiation of
coagulation necrosis from hypoattenuating tumor is usually easiest on images in the
equilibrium phase of contrast enhancement (5 - 10 min after iodinated contrast
administration), where persistent hypoattenuation is seen in coagulated tissues, but not in
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viable tumor [19]. Hepatic arterial phase images are most useful for early enhancing
hepatocellular carcinomas. Imaging during the hepatic arterial phase can also
demonstrate a thin rim of contrast which corresponds at pathology to an early
inflammatory reaction to the thermal damage. This inflammatory rim can be seen
immediately following ablation, and often regresses over the first month following
treatment.

MR images characteristically reveal altered signal on both T1- and T2- weighted images
[59, 66, 69]. Treated areas are devoid of gadolinium enhancement. Several studies have
documented the particular utility of decreased signal on T -2 weighted images as a marker
for induced coagulation [67, 69]. Radiologic - pathologic correlation in both experimental
and clinical studies have demonstrated that CT and MR imaging findings predict the
region of coagulation to within 2 - 3 mm [19].

One key advantage of MR over other diagnostic imaging modalities is its potential ability
to aid in determining the extent of coagulation during energy application. Heat sensitive
sequences have been constructed and permit tailoring of energy deposition [70 - 73].
Such a strategy is most useful in allowing the operator to limit energy deposition when
heating adjacent to a critical structure (i.e., nerves) reaches cytoxic temperatures. Pulsing
switches have been developed to overcome interference of radiofrequency and
microwave usage during the acquistion of MR radiofrequency encoded data [73].

3.3 Long -term imaging follow -up

Although initial imaging can serve as a good indication toward the adequacy of therapy,
the resolution and accuracy of current imaging modalities preclude identification of
residual microscopic foci of malignancy, particularly at the periphery of a treated lesion
(where blood flow is greatest). These viable tumor foci will inevitably continue to grow
and if untreated will result in failed therapy. Additionally, we have not found the use of
needle biopsy helpful given issues of sampling error, and the possible difficulty in
differentiating between adequately treated and viable tumor using histopathologic
techniques alone. Thus, long term imaging follow -up is necessary to find untreated
regions of the tumor or document complete treatment of a given focal malignancy.

Long term follow -up of thermal ablation using ultrasonography has limited value [58].
Obscuration of the characteristic peri- tumoral halo observed pre -treatment is often
observed, and the variability of gray -scale sonographic changes precludes accurate
assessment of induced coagulation. Recently, however, it has been demonstrated that
sonographic, microbubble blood pool agents such as SH 508 A (Levovist; Schering AG,
Berlin, Germany) may be helpful in differentiating treated tumor from the avascular
coagulation at follow -up to 6 months [74].

Contrast -enhanced CT has been the mainstay of long -term imaging follow -up.
Coagulated, non -enhancing regions increase in conspicuity and develop sharper margins
by two weeks post -ablation [19, 59]. Imaging at 6 - 12 months can demonstrate marked
regression of the metastasis and the region of induced coagulation necrosis. Most
commonly, the non -enhancing treatment focus shrinks less than 20% in volume. A
peripheral rim that densely enhances on delayed contrast images often surrounds the
region of coagulation. This finding should not be misconstrued as residual tumor, as
experimental and clinical studies have demonstrated this to represent inflammatory
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reaction to the thermally damaged cells [59]. A bulky, irregular rim at the edge of a
treatment site is the most common appearance of an incompletely treated lesion.

When using MR for long -term follow -up (exceeding 3 months), we have relied primarily
on the presence or absence of gadolinium enhancement within the treated region [58, 59].
In contrast to MR images obtained within three days of ablation, we have observed
heterogeneous alteration on un- enhanced T1 - and T2- weighted images. This changing
variability in signal intensity throughout the ablated region is likely caused by an uneven
evolution of the necrotic area and the host response to thermal damage. Hence, these
images have therefore been thus far too variable to be relied upon as adequate proof of
tumor destruction. Furthermore, the multiplicity of potential imaging sequences and
parameters used for MR imaging has only further compounded this problem. Further
research may ultimately lead to greater insight into the biologic mechanisms that account
for such signal heterogeneity. For gadolinium enhanced images, it is also common to
detect a thin rim of enhancement after treatment. As for CT, only when this rim appears
bulky is this finding to be interpreted as representing untreated tumor.

Nuclear medicine has been used in a limited number of cases following ablation therapy.
In one study, positron emission tomography scanning with 18- Fluoro- Deoxy- Glucose
(18 -FDG) was used to detect active foci of residual tumor following percutaneous ethanol
instillation in intrahepatic metastases [75].

Our current imaging strategy following thermal ablation includes an initial contrast -
enhanced CT or MR study on the day of treatment to determine whether the patient has
residual gross, viable disease that necessitates immediate retreatment. Follow - up
imaging is then performed at 1 and 3 months, and every 3 - 4 months thereafter. These
scans are helpful in documenting the presence or absence of residual tumor, which often
may be amenable to additional thermal ablation treatments. If there is no evidence of
peripheral tumor regrowth by 6 - 12 months, adequate treatment can be inferred.

4. CLINICAL TECHNIQUES AND RESULTS

4.1 RADIOFREQUENCY ABLATION

Liver tumor ablation can be accomplished using radiofrequency to induce thermally
mediated coagulation necrosis [1 -2]. Both monopolar and bipolar radiofrequency
generators have been used, and several generators are commercially available, some of
which have incorporated circuitry which enables measurement of generator output
(wattage and milliamperage), tissue impedance, and electrode tip temperature.

Radiofrequency energy is delivered to the tumor by means of an RF electrode, a thin
(usually 21 -14 gauge) needle which is electrically insulated along all but the distal 1 -3 cm
of the shaft. This needle is placed into the tumor using a percutaneous approach. When
connected to the appropriate generator, radiofrequency current flows from the exposed,
non -insulated portion of the electrode. As this current flows to electrical ground, it
results in ion agitation, and is converted into heat, which induces cellular death via
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coagulation necrosis [21]. For monopolar systems the ground is usually a pad placed on
the patient's back or thigh, while in bipolar systems, a second electrode serves as the
ground. Sesquipolar systems use an active electrode smaller than the return to
concentrate the current. Electrodes can be placed directly into tumors using either
ultrasound, CT, or MR guidance. We prefer the combined use of ultrasonography and
CT- fluoroscopy. Currently, most clinicians use either hooked electrodes or internally -
cooled single or cluster (triple) electrodes with pulsed technique.

4.1.1 Technique

As with other ablative therapies, the procedure can be performed either percutaneously,
laparoscopically, or at laparotomy. For percutaneous procedures, the RF is generally
applied following local anesthesia with conscious sedation. We prefer to use a
benzodiazepam such as medazolam and a narcotic such as fentanyl. An anesthetic cream
containing prilocaine and xylocaine can be applied to the skin surface one hour prior to
treatment, or subdermal injection of 1 - 2% lidocaine can be used for local anesthesia.
Continuous cardiovascular and respiratory monitoring is performed.

Radiofrequency electrodes with 2 - 3 cm of exposed metallic tip are usually used to
deliver the radiofrequency to the tissues. For monopolar treatments, a single electrode is
placed within the tumor using ultrasound or CT guidance. Bipolar and multiprobe array
systems require the insertion of two or more electrodes. Grounding is achieved by
attaching, a large grounding pad to the patient's thigh or back. Proper placement of this
pad with a wide area of skin to pad contact is essential for preventing electrical burns at
the grounding pad site [76]. The electrode is attached to a 500 kHz RF generator. RF is
usually applied for 10 - 30 minutes. Depending on the technology and generator used,
RF power is either titrated to achieve a specified current or electrode tip temperature.
When cooled -tip electrodes are used, a peristaltic pump infuses 0° C normal saline into
the cooling lumen at a rate sufficient to maintain a tip temperature of 20 - 25° C [58, 59].

For a procedure to be considered successful, treatment of all identifiable metastatic
disease must be complete (i. e. ablation of all malignant tissue). Ideally, a peripheral
margin of at least 0.5 - 1 cm of apparently healthy hepatic tissue should be treated with
the goal of preventing local recurrence. If adequate margins are not obtained, peripheral
tumor growth may occur, and generally will have unfavorable geometry for retreatment.
In order to achieve complete treatment, multiple electrode insertions are necessary for
most lesions 3 -4 cm in size. Adequate treatment of tumors larger than 4 cm is unlikely
using current technology.

4.1.2 Clinical Results

To date, multiple series have been published in which radiofrequency ablation was used
for the treatment of hepatic malignancies, and several additional series have been
presented at scientific meetings. However, these results must all be viewed as
preliminary, and principally an assessment of safety and short-term efficacy, since long-
term follow -up has only recently begun to be available. The following section will
summarize the results of the published series.
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Rossi et al. treated 50 patients, 39 of which had 41 small HCC nodules and 11 of whom
had 13 hepatic metastases [77]. They employed both monopolar and bipolar
radiofrequency electrodes, using multiple probe insertions and multiple treatment
sessions. All but one of the tumors treated in their series were smaller than 3.5cm in
diameter. For the 39 patients with HCC, the mean number of treatment sessions was 3.3.
Mean follow -up was 22.6 months, and the authors reported a median survival of 44
months. A total of 16 (41 %) of 39 patients developed recurrent tumor: 2 (5 %) of 39
developed local recurrences; 14 (36 %) of 39 developed new lesions. For the 11 patients
with metastases, the mean number of treatment sessions was 3.1. Two of these patients
underwent surgery within 35 days of RF tumor ablation. Histopathologic examination of
the resection specimens showed complete tumor necrosis in 1 (50 %) of 2 of these
patients. Mean follow -up was 11 months in the remaining 9 patients. In this group, only
1 (11 %) of 9 patients was without evidence of metastases at one year following
treatment. Of note, however, local recurrence was only seen in 2 (22 %) of 11 patients in
whom metastases were treated: one who underwent surgery, and one who developed both
local recurrence and other liver metastases.

In a subsequent series, Rossi et al. treated 37 patients, 23 of which had 26 HCC nodules,
and 14 of whom had a total of 19 hepatic metastases [31]. The mean diameter of the
tumor nodules was 2.5 cm. The treatments were performed using hooked needle
electrodes, and required an average of 1.4 treatment sessions per lesion. Five patients in
their series ultimately underwent surgery 20 -60 days following RF tumor ablation.
Histopathologic examination of the resected specimens showed recurrent tumor in 1
(20 %) of these patients (a patient with an HCC larger than 2.5 cm). The remaining 21
patients with HCC and 11 patients with metastases were followed for a mean of 10 or 12
months, respectively. The authors report disease free survival in 15 (71 %) of 21 patients
with HCC, and 2 (18 %) of 11 patients with metastases. Of note, local recurrence was
only seen in 3 (8 %) of 37 patients: two with HCC (one who subsequently underwent
surgery) and one with metastases.

Solbiati et al. treated 16 patients with 31 metastases from gastrointestinal carcinomas
[33]. These tumors measured 1.5 - 7.5 cm in diameter; 27 (87 %) of 31 were less than 3
cm in diameter. The treatments were performed using conventional monopolar
techniques using both single electrodes and multiple electrode arrays, and required an
average of 2.4 treatment sessions per lesion. A complete response (defined as no
evidence of local tumor growth by CT and MR imaging six months following treatment)
was achieved in 18 (58 %) of 31 lesions; all were less than 3 cm in diameter. Partial
tumor necrosis was seen in 13 (42 %) of 31 lesions. Necrosis was estimated to be > 80%
of tumor volume in 9 of these lesions (6 of which were larger than 3 cm) and < 80% of
tumor volume in the remaining four (all of which were larger than 2 cm). Disease free
survival was achieved in 50% of patients at a mean follow -up of 16.6 months. Overall
survival was 100% at one year and 61.5% at two years.

Solbiati et al. subsequently reported a series of 29 patients in whom 44 hepatic metastases
from gastrointestinal malignancies (primarily colorectal carcinoma) were treated using
internally cooled electrodes [58]. All lesions in this series measured 1.5 -4.5 cm in
diameter. Thirty -seven (84 %) of the 44 lesions were treated in a single treatment session;
the remaining seven lesions required a second session. The authors report "technical
success" (lack of residual unablated tumor at follow -up CT or MR imaging 7 - 14 days
after the completion of treatment) in 40 (91 %) of 44 tumors. Two patients could not be
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followed beyond 3 months: one underwent surgery 60 days following RF ablation; one
was lost to further follow -up after 3 months. Overall, complete tumor necrosis was
achieved in 33 (75 %) of 44 lesions after a mean follow -up of 7.9 months. In this series,
treatment outcome was significantly better in patients with small tumors: local recurrence
developed in none of the 12 lesions smaller than 2 cm, 14 (70 %) of the 20 lesions that
were 2 -3 cm in diameter, and 7 (58 %) of the 12 lesions larger than 3 cm. Disease free
survival was achieved in 16 (76 %) of 21 patients at 6 months, 9 (50 %) of 18 patients at
12 months, and 3 (33 %) of 9 patients at 18 months. Survival at 2 and 3 years is now
reported at 67% and 40 %, respectively [78].

Livraghi et al. treated 14 patients with 24 hepatic metastases and one patient with hepatic
cholangiocarcinoma using conventional radiofrequency electrodes and simultaneous
intraparenchymal saline injection [47]. The metastases measured 1.2 - 4.5 cm (mean 3.1
cm) in diameter; the cholangiocarcinoma was 2.6 cm in diameter. Complete necrosis was
obtained at 6 months follow -up in 13 (52 %) of 25 treated lesions. All of the successfully
treated lesions measured smaller than 3.9 cm in diameter. However, even in the
successfully treated lesions, the authors noted that zones of coagulation necrosis were
often irregular in shape and unpredictable. This, in combination with the relatively poor
results overall, led them to abandon this technique in favor of the use of internally cooled
electrodes.

Livraghi et al. subsequently compared radiofrequency ablation and percutaneous ethanol
injection for the treatment of small hepatocellular carcinoma [50]. They treated 86
patients with 112 small (_< 3 cm in diameter) hepatocellular carcinoma with
radiofrequency ablation using internally cooled electrodes (42 patients with 52 tumors) or
percutaneous ethanol injection (44 patients with 60 tumors). These patients were studied
with dual phase spiral computed tomography at least 4 months after treatment. The
authors reported complete necrosis in 47 (90 %) of 52 tumors treated with radiofrequency
ablation and in 48 (80 %) of 60 tumors treated with percutaneous ethanol injection.
Treatment with radiofrequency ablation required fewer sessions per tumor than did
treatment with percutaneous ethanol injection (1.2 versus 4.8). The results of this study
suggest that radiofrequency ablation is at least as effective as percutaneous ethanol
injection in the treatment of small hepatocellular carcinoma. The authors also noted that
the size and shape of RF- induced tumor necrosis generally conformed to the size and
shape of the tumor which had been treated, and in many cases was larger than might have
been expected on the basis of prior animal and human experience. They postulated the
"oven effect," whereby cirrhotic liver surrounding a tumor treated with RF acts as a
thermal insulator and facilitates thermally mediated tissue necrosis.

Siperstein et al. treated 6 patients with 13 liver metastases from primary neuroendocrine
tumors [37]. The metastases measured 1.5 - 7.0 cm in diameter. These authors used a
laparoscopic approach with a hooked -electrode needle system. In order to treat these
lesions, 1 -8 applications of radiofrequency, each lasting 5 - 15 minutes, were needed.
The overall procedures lasted between one hour and forty -five minutes and seven hours
and five minutes. Follow -up CT scanning suggested a complete ablation of all 13 lesions
at 1 week, and 11 (100 %) of 11 lesions in four patients followed for 3 months. Longer
term follow -up was not reported. The authors also reported symptomatic improvements
in these patients with functional tumors.
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Recently, Jiao et al. treated 35 patients with primary and secondary liver tumors who
were not considered candidates for curative hepatic resection: 8 with HCC, and 27 with
metastases (17 from colorectal carcinoma) [79]. Treatment was performed using
internally cooled electrodes either percutaneously under ultrasound guidance (5 patients),
or at laparotomy guided by manual palpation and intraoperative ultrasound (30 patients).
Intraoperative procedures were performed during Pringle's maneuver in to decrease
hepatic perfusion and thereby heat conduction from tissues surrounding RF- treated
lesions. Seventeen (57 %) of 30 patients treated intraoperatively underwent only RF
ablation; 13 (43 %) of 30 patients underwent combined RF ablation and surgical resection
(including 2 patients who initially underwent percutaneous RF ablation). Overall, 24
(69 %) of 35 patients were found to have "stable disease" at a mean of 10.1 months of
follow -up. Of note, 11 (41 %) of 27 patients with hepatic metastases were initially judged
to be unresectable, but subsequently underwent resection in combination with RF
ablation to tumors in the remaining liver.

Curley et al. have also performed a prospective, nonrandomized RF ablation trial of
unresectable malignant hepatic tumors in 123 patients [38]. Tumors were treated
percutaneously or during surgery under ultrasound guidance using a hooked array needle
system. One hundred and sixty nine tumors (median diameter 3.4 cm, range 0.5 to 12 cm)
were treated. Forty eight patients (39 %) had hepatocellular carcinoma, and 75 patients
(61 %) had metastatic liver tumors. Percutaneous treatment was performed in 31 patients
(35 %) and intraoperative RF in 92 patients (75 %). There were no treatment- related
deaths, and the complication rate was 2.4 %. All treated tumors were completely necrotic
on imaging studies after completion of RF treatments. With a median follow -up of
15months, tumor has recurred in 3 of 169 treated lesions (1.8 %), but metastatic disease
developed at other sites in 34 patients (27.6 %).

Few complications have been reported by these investigators. Rossi et al. reported no
complications in their series [31, 77]. Solbiati et al. observed two cases of self - remitting
intra- peritoneal bleeding, one each using conventional and cooled -tip electrodes [33, 58].
One major complication (hemothorax that required drainage) and four minor
complications (intraperitoneal bleeding, hemobilia, pleural effusion, cholecystitis)
occurred in patients treated with RF ablation were reported by Livraghi et al. [78]. In
Curley's series, there were no treatment- related deaths, and the complication rate after RF
ablation was 2.4% [38].

4.2 INTERSTITIAL LASER PHOTOCOAGULATION

Interstitial laser photocoagulation (ILP) is another method for inducing thermally
mediated coagulation necrosis which has been employed for percutaneous tumor
ablation. For this procedure, flexible thin optic fibers are inserted into the target through
percutaneously placed needles, using imaging guidance. The laser provides sufficient
energy to allow for significant heat deposition surrounding the fiber tip, inducing protein
denaturation and cellular death [23]. As with radiofrequency systems, thermal profiles
have been demonstrated to correlate well with the extent of coagulation necrosis observed
histopathologically [30, 79] as well as with ultrasound [29, 79] and T1- weighted MR
images [68, 80]. Clinical studies have been performed predominantly with neodymium:
yttrium- aluminum -garnet (Nd:YAG) laser fibers operating at a wavelength of 1,064 nm,
which provide relatively good tissue - penetrating power [81]. One to two seconds of high
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power (50 -80 watts) laser output results in immediate vaporization of tissues in contact
with the laser fiber [82]. With low power (1 - 2 watts) over a 500 -1,000 seconds, deeper
penetration of light and heat are possible, and result in greater volumes of coagulation
necrosis [20]. However, even under the best of circumstances, coagulation of no more
than 1.6 cm in diameter can be achieved with a single laser fiber [30, 79]. For this
reason, many investigators have resorted to the use of diffuser tips [83] or beam -splitters
with multiple fibers [84], which enable the simultaneous deposition of photoenergy to a
larger area of tissue.

4.2.1 Technique

As for radiofrequency procedures, laser tumor ablation is most often performed using
concious sedation with benzodiazepams and narcotics and local topical lidocaine
anesthesia. Ultrasound- guidance is most often used to position biopsy needles (18 - 21
gauge) into the tumor. CT guidance can also be used to position the needle. A plastic
guide with multiple evenly spaced holes can be used when multiple needles are to be
inserted simultaneously. Laser fibers (thin fiber -optic cable) are then inserted through the
cannula of each biopsy needle. The laser fibers are attached to a Nd:YAG laser which is
excited at 2 - 4 Watts for 5 - 15 minutes. A beam splitter is necessary to simultaneously
activate multiple laser fibers. Ultrasound is usually used to monitor the ablation in real
time, but recent studies have reported results with MR monitoring. As for RF, longer-
term imaging follow -up is most often performed with axial imaging (CT and MR).

4.2.2 Results

In 1990, Hahl et al. described their experience treating seven patients with malignant
liver tumors using a Nd:YAG laser at laparotomy [85]. Contact sapphire probes with
power settings of 6 W were placed into the middle of the tumor and temperatures of 41 -
45° C were maintained 1.5 - 2.0 cm from the laser fiber. Percutaneous fine needle
biopsies obtained 3 - 5 days post - procedure demonstrated tumor necrosis. However, in
30% of the lesions, residual viable tumor cells were present. CT imaging obtained four
weeks post - treatment also showed signs of necrosis. They reported one fatality in their
series, apparently caused by an air embolism.

In 1990, Masters et al. [86] treated four patients with three or fewer hepatic metastases
measuring up to 6 cm in diameter. Primary tumors were of colorectal origin in three
cases, and gastric origin in one patient. All procedures were performed under conscious
sedation, using a Nd:YAG laser. Up to four 19 gauge needles, each bearing a laser fiber,
were inserted percutaneously into the metastases under ultrasound guidance. The fibers
were then fired at 1.5 - 2.0 watts for 500 seconds. No early or late complications were
reported. Ultrasound follow -up at two weeks post -procedure demonstrated that treated
metastases became hyperechoic with a circumferential hypoechoic halo. CT follow -up at
2 months demonstrated absence of enhancement of the treated lesion following contrast
administration. Three of the treated metastases were unchanged in size, while the fourth
continued to increase in size. In 1992, this same group described their experience with
the treatment of ten patients with a total of 18 hepatic tumors which were treated using a
total of 31 treatment sessions [87]. The treatments were well tolerated and produced
radiological evidence of tumor necrosis less than or equal to 3 cm in diameter. Overall
objective response rate, defined as complete treatment of a given lesion, was 44 %.
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In 1993, Amin et al. representing the same Middlesex group, described ILP treatment of
55 liver metastases in 21 patients [34]. In many of these patients, multiple fibers (up to
16) were fired simultaneously (76 %). Greater than 50% tumor necrosis was achieved in
82% of the tumors, and 100% necrosis was achieved in 38 %. Metastases smaller than 4
cm in diameter were treated more effectively, and required fewer treatment sessions than
did those larger than 4 cm. Reported complications were minor, including severe pain in
four cases, persistent pain for up to 10 days in 11 cases. CT follow -up further identified
asymptomatic subcapsular hematomas in four cases and pleural effusions in six cases.

Another report from the same group [88] compared results for the treatment of hepatic
metastases using ultrasound- guided percutaneous ethanol instillation (PEI) and ILP. This
non - randomized study demonstrated better results with laser therapy than PEI for patients
with metastatic disease. Seventy -six liver metastases in 22 patients were treated using
either ILP or PEI. Fifty four tumors (median size 2.7 cm) were treated with laser, and 22
tumors (median size 1.5 cm) were treated with PEI. Follow -up dynamic contrast -
enhanced CT of the lesions treated with ILP demonstrated well demarcated areas of
coagulation necrosis which showed no evidence of contrast enhancement. Coagulation
necrosis was greater than 50% of tumor volume in 87% of the lesions, while complete
necrosis was seen in 52 %. In follow -up CT of the lesions treated with PEI demonstrated
patchy areas of non -enhancement in 24 %, and no change in 47 %. Complete tumor
necrosis was not achieved in a single case with PEI, despite the fact that the tumors were
small and should have been amenable to such therapy. In addition, pain during treatment
was more common and more severe with PEI, than ILP. No major complications were
observed using either therapy.

Nolsoe et al. [29] reported the treatment of 16 colorectal metastases in 11 patients using
ILP with a tip diffuser. Twelve tumors (75 %) measuring 1.0 -3.7 cm in diameter (mean
2.4 cm) were completely treated. In the remaining four tumors measuring 2 -4 cm in
diameter, necrosis was seen throughout most of the lesion, but complete treatment was
not achieved. In a later report, this same group reported that the sonographic appearance
of treated areas evolved over weeks to months to a pattern consistent with simple hepatic
cysts [89].

Vogl et al. recently evaluated MR imaging - guided ILP of liver metastases in 20 patients
with 33 metastases from colorectal carcinoma (75 %) or other primary tumors (25 %) [68].
In 69% of lesions < 2 cm in diameter, contrast -enhanced MR images demonstrated
substantial necrosis immediately post- treatment. Local tumor control was 69% at 6
months and 44% at 12 months. Among lesions larger than 2 cm, necrosis was frequently
incomplete, with local tumor control of only 41% at 6 months and 27% at 12 months.

4.3 MICROWAVE

Microwaves are a third thermal energy source which have been used for percutaneous
image -guided tumor ablation. In contrast to radiofrequency, where the inserted electrode
functions as the active source, in microwave ablation the inserted probes (usually 14
gauge) function as antennae for externally applied energy at 1,000 - 2,450 mHz [90]. The
microwave energy applied to the tissues results in rotation of polar molecules which is
opposed by frictional forces. As a result there is conversion of rotational energy into heat
[91]. One potential advantage of microwave over RF and laser is that investigational ex-
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vivo studies have shown greater tissue penetration and larger zones of coagulation
necrosis with microwave technology. This finding is most pronounced with cooling of
the microwave antenna in a fashion similar to cooled -tip RF [92]. In clinical practice,
however, arrays of microwave antennas or multiple insertions of a single microwave
probe have been necessary to treat lesions greater than 2 cm in diameter [93 - 96]. One
additional and important limitation of this method is the complexity of microwave
antenna design, which limits the antenna to specific lengths corresponding to the
microwave generator wave -form. This differs from RF and laser where a more variable
length of tissue can be subject to treatment. Even greater limitations in lesion geometry
are imposed when microwave arrays are used [97].

4.3.1 Technique

Microwave coagulation therapy can be performed both intraoperatively [93 - 96, 98] or
percutaneously using conscious sedation [99 - 104]. Real-time ultrasound imaging has
been used in both instances to place a 14 gauge guide needle into the tumor. A single
microwave antenna measuring 1.6 mm in diameter is placed through the guide needle
into the tumor. The guide needle is retracted over the shaft of the antenna so as to limit
interference during energy deposition. The antenna is connected to a 2,450 mHz
microwave generator which provides the necessary energy to induce coagulation. In
most studies, 60 Watts are deposited for 60 - 120 seconds. Multiple insertions of the
antenna with subsequent generator activation are required to treat a given tumor.
Intraoperatively, there is no limit to the number of antenna insertions [93 - 96], but no
more than three punctures are usually undertaken in any given session, when the therapy
is administered percutaneously [99 - 100]. Multiple treatment sessions are therefore the
rule for percutaneous microwave therapy. The efficacy of microwave therapy is measured
using tumor markers and diagnostic imaging in a manner analagous to PEI, RF, and laser
ablation therapies.

4.3.2 Results

Initially, microwave ablation techniques were used by several Japanese investigators for
intraoperative applications such as minimizing blood loss during hepatectomy [93 - 98].
Saitsu et al. were the first to report treatment of 21 patients with HCC less than 5 cm in
diameter using intraoperative microwave coagulation [93]. Recurrence of disease was
noted in only 5 patients (23.8 %) with a single death at 18 months post - procedure. The
remaining 20 patients survived to a maximum of 39 months. A larger series of 70 HCC
nodules in 46 patients was subsequently treated by this same group [94]. Of these, 42
patients survived a minimum of 4.3 years.

Sato et al. also treated 19 patients with 31 HCC nodules measuring 0.5 -9.0 cm using
intraoperative microwave application [96]. In this study multiple probe insertions (mean
= 46, maximum 112 insertions) were used for each tumor with relatively short (30
second) application of high wattage (70 - 90 W) output. Using this technique, surgical
margins of 1 cm were achievable in all but 3 lesions. Fourteen patients had all
identifiable tumors treated, whereas in five patients other tumor nodules were left
untreated with the procedure classified as palliative. In the group with presumed total
treatment, no local or distant recurrence was observed over one year. In these patients,
elevated AFP levels returned to normal after treatment tumors were observed to decrease
in size on serial follow -up CT scans. Ten of these patients were disease free at 14 - 64
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months of follow -up (mean 24 months). Of the remaining four patients whose tumors
were felt to be totally treated, two developed new foci of HCC, one developed a local
recurrence (presumed treatment failure) and one died.

Hamazoe et al. treated 21 HCC nodules (to 6.5 cm maximal dimension) in eight patients
using 222 insertions of the microwave antenna [98]. CT imaging findings and needle
biopsy at one month post - treatment showed no evidence for tumor recurrence. No deaths
were reported over a mean 16 months of follow -up, but new tumor nodules were seen in
three of the eight patients.

Percutaneously microwave coagulation therapy (PMCT) performed with imaging -
guidance rather than at laparotomy has also recently been reported [99 - 104]. These
studies, although preliminary, suggest that microwave ablation therapy will certainly
have a significant role in the future.

Seki et al. initially reported the treatment of 18 patients with solitary, surgically
unresectable HCC nodules measuring less than 2 cm in greatest dimension [99].
Microwave energy was applied at 60 W for 120 seconds to the tumor and a surrounding
margin of apparently normal hepatic tissue. One to four probe insertions at separate
treatment sessions were required to achieve adequate necrosis. No serious side effects or
complications were encountered. Over a follow -up period of 11 -33 months, no local
recurrence was detected, AFP levels were reduced in all patients, and imaging findings
(similar to those reported for RF ablation) suggested complete local treatment. One
patient died at 22 months, while the remaining 17 patients were alive at the end of the
study. A second report described PMCT performed for small solitary intrahepatic
colorectal metastases measuring <_ 3.0 cm in diameter. In 15 patients, a 25 cm long and
2.0 mm thick microwave antenna electrode was inserted percutaneously into the tumor
area under ultrasonic guidance. Thirteen of the 15 metastatic tumors were completely
ablated with 3 -10 applications of microwave irradiation at 80 watts. Over the 9 - 37
month follow -up period, 10 patients survived. No local recurrence was detected when
adequate tumor coagulation was initially achieved, and no serious side effects or
complications were encountered during or after the PMCT. Metastatic diseases distant
from the treatment site was responsible for four of five patient deaths in this study [101].

Recently this group has also compared the efficacy of PMCT and percutaneous ethanol
injection therapy (PEI) in the treatment of patients solitary hepatocellular carcinomas
measuring < 2 cm in greatest dimension, and suggested that PMCT may be superior to
PEIT for the local control of moderately or poorly differentiated small HCC [106]. In this
retrospective, nonrandomized study, 90 patients were treated with PMCT or PEI. Of the
43 patients with well -differentiated HCC, 23 were treated with PMCT and 20 with PEI.
Of the 47 patients with moderately or poorly differentiated HCC, 25 were treated with
PMCT and 22 with PEI. Overall 5 -year survival for patients with well -differentiated
HCC treated with PMCT (70 %) and PEI (78 %) were not significantly different and no
difference between the patterns of recurrence were observed. However, among the
patients with moderately or poorly differentiated HCC, overall 5 -year survival with
PMCT was significantly better than with PEIT (78% vs. 35 %, p = 0.03). Additionally, for
patients with moderately or poorly differentiated HCC, local recurrence was observed in
9 of 22 (41 %) treated with PEI, whereas only 2 of 25 patients (8 %) treated with PMCT
had a local tumor recurrence.
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Murakami et al. have also used a similar percutaneous microwave coagulation technique
to treat nine hepatocellular carcinomas exceeding 3 cm in diameter in nine patients [100].
All patients had failed transcatheter arterial embolization therapy within 2 weeks prior to
microwave ablation therapy. A single 14 gauge needle electrode was positioned
precisely within the lesion under sonographic guidance. Microwaves of 2,450 MHz were
applied for 60 seconds at 60 watts. Three to 12 repositionings of the electrode were
required for any given tumor. All patients tolerated the treatments well, with no serious
complications observed. Dynamic CT revealed non -enhancing areas indicative of
coagulation necrosis enveloping the tumor in every case. Follow -up CT at one month
demonstrated a slight reduction in the size of this hypodense region, usually to an area
smaller than the original diameter of the treated tumor. Imaging follow -up at 4 -9 months
showed that five lesions were completely treated without signs of local recurrence.

Matsutaka et al. have reported the results of their 3 -year experience using US- guided
PMCT [103]. A total of 27 inoperable liver tumors in 24 patients were treated and were
followed for 4 - 40 months (18 month average). Twenty tumors were hepatocellular
carcinomas (HCCs) and 7 were metastases. Overall survival was 83% at 1 year and 69%
at 2 years. Adequate treatment was obtained in 70% of tumors measuring less than 3 cm,
while complete treatment was achieved in only 55% of tumors larger than 30 mm (p <
0.05). Tumor became smaller or disappeared in 85% of the well differentiated HCCs, and
in only 25% of the moderately differentiated HCCs. None of the poorly differentiated
HCCs responded. In metastatic tumors, complete local therapy was achieved with PMCT
in 57% of cases. Slight pain (24 %), fever (20 %) and subcutaneous hematoma (8 %) were
noted immediately following the procedure. In two cases of poorly differentiated HCC,
needle tract seeding was observed.

The complication rate for PMCT has recently been reported by Shimada et al. [104]. In
this series, complications were noted following PMCT treatment in 14.2% of 42 patients
with hepatocellular carcinoma and 20.6% of the 29 with metastatic liver. The
complications included abscess,biloma, bleeding, hepatic failure, and dissemination of
cancer cells. Increased tumor size (> 4 cm) and tumor location (high in the dome of the
liver) were associated with a higher complication rate.

4.4 CRYOTHERAPY

Cryotherapy is a method of tumor ablation which uses cooled probes to freeze and
destroy areas of tissue measuring up to 8 cm in diameter [105]. The procedure is
currently predominantly performed intraoperatively, as probes measuring 3 mm in
diameter or larger are necessary to deliver optimal quantities of liquid nitrogen to the
probe tip. Although cryotherapy is technically not a percutaneous procedure, this method
will be discussed in this chapter as probes suitable for percutaneous use are currently
under development [65]. Published results of hepatic cryotherapy are now available for
almost 900 patients. Its safety is well established and its clinical role in treating patients
with unresectable hepatoma or liver metastases from colorectal carcinoma is well
supported by tumor marker and survival data. Additionally, the results in the treatment of
neuroendocrine liver metastases are promising. However, as for other methods of
minimally- invasive therapy, the proportion of patients who might be usefully treated with
this technique is not yet well established.
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Destruction of tumor tissue by cryotherapy is attributed to several mechanisms. Rivoire
et al. [106] have shown that the temperature threshold required to obtain complete
necrosis in normal liver was - 15° C. Cooper et al. [107] have further defined the
cytotoxic mechanisms of cryotherapy. Internal freezing results in membrane rupture
during subsequent thawing as a result of ice crystals. This leads to solute -solvent shifts,
which exposes cells to hyperconcentrated electrolytes. Cellular dehydration ensues.
Experimental studies of cryosurgery in normal and tumorous rat liver [108] suggest that
microcirculatory shutdown after cryosurgery may also be a contributing factor to tumor
necrosis by ischemic mechanisms. Thus, tissue destruction with cryoablation is
fundamentally different from that of cooled -tip RF where the cooling of tissues to 15 -25°
C only facilitates deposition of greater RF energy and does not contribute to induction of
coagulation necrosis.

4.4.1 Technique

Intra- operative ultrasound is performed in order to identify hepatic lesions and to monitor
the freezing process to ensure that the cryolesion includes the tumor mass [105].
Cryoprobes measuring 3 -10 mm are usually used. Larger probes tend to produce larger
areas of tissue destruction (6 -8 cm), whereas smaller 3 mm probes produce
approximately 3 -3.5 cm of tissue destruction. Liquid nitrogen ( -196° C) is introduced
into the probe in a controlled fashion, resulting in freezing of the surrounding tissues.
Ultrasonography has been used to monitor the area treated in real -time as the margin of
frozen tissue appears hyperechoic when compared to both normal liver and tumor. The
duration of freezing ranges from 5 to 20 minutes, with larger lesions requiring extended
freezing times. The area to be frozen (i.e. the "cryoball ") must extend at least 0.5 -1.0 cm
beyond the tumor margin to ensure adequate treatment of the lesion.

Ten to 20 minutes of thawing are allowed before additional cryotreatments are
performed. Frozen tissues appear hypoechoic after thawing compared with normal
unfrozen liver. Usually at least two freeze -thaw cycles are performed. Ravikumar et al.
[109] demonstrated that two or three freeze -thaw cycles are 100% effective in controlling
established rat colon tumor isografts and preventing isograft take, while one freeze -thaw
cycle leads to suboptimal results. Stewart et al. [110] have further demonstrated
clinically that significantly higher peak serum AST levels are seen when a double- freeze
cycle is used, as compared to a single period of tissue freezing. Elevated AST
presumably corresponds to increased tissue damage.

4.4.2 Intraprocedural Monitoring

Real -time monitoring of the procedure using ultrasound has been previously described.
Ex -vivo studies by Lam et al. have demonstrated that the hyperechoic rim seen during
freezing is caused by reflection of ultrasound waves at the interface between unfrozen
and frozen liver as a consequence of an increased acoustic impedance of frozen liver
[111]. This increased acoustic impedance is due to the decrease in elasticity of hepatic
tissue as it freezes. Posterior acoustic shadowing is partly due to the attenuation of the
incident ultrasound waves by reflection at the interface between unfrozen and frozen
liver, and is also dependent on the crystalloid -protein content of hepatic parenchyma.
Correlation in size between the ultrasonographic cryolesion and the measured hepatic ice
ball is excellent for cryolesions less than 50 mm in diameter [106].
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Studies in animals have demonstrated that CT and MR can also be used for intra-
procedural monitoring. Reiser [112] has shown that in pigs, CT is useful for continuous -
monitoring of ice ball formation, and can do so with high spatial resolution. Near real -
time MR imaging of cryoablation has also been performed in normal rabbits. Matsumoto
et al. [113] have demonstrated that MR images obtained during the freezing procedure
can accurately depict the area of final necrosis. Histologic changes at each stage of lesion
development correlated well with MR signal intensities on follow -up images. However,
most of the currently available cryotherapy systems are incompatable with the strong
magnetic fields of the MR environment. To date, all clinical studies have used intra-
operative ultrasound for imaging guidance.

4.4.3 Follow -up Imaging

CT has been the primary imaging modality used in clinical follow -up. McLoughlin et al.
[114] and Kuszyk et al. [115] performed CT in patients who underwent hepatic
cryoablation. Cryolesions appeared primarily as areas of hypodensity, often with
extension to the liver capsule. In Kuszyk's study, approximately one third of the 28
treated tumors contained air, and over 90% contained hemorrhage. Peripheral
enhancement was demonstrated in approximately half of the lesions evaluated with
intravenous contrast material. In this study, cryolesions were wedge shaped (54 %),
round (29 %), or teardrop shaped (21 %). Other associated findings included subcapsular
hemorrhage (29 %), perihepatic fluid collections (43 %), right -sided pleural effusion
(93 %), left -sided pleural effusion (64 %), atelectasis (93 %), and ascites (7 %). One
iatrogenic portosystemic shunt was detected. The authors therefore concluded that the
postoperative CT appearance of hepatic lesions treated with cryoablation in patients
without complications mimics that seen in the liver of patients with hepatic abscesses or
infarct. Careful analysis of all studies was advocated to avoid confusing normal findings
related to the procedure with those related to procedural complications. CT is therefore
usually performed early in the post - procedural period to serve as a baseline for detecting
superimposed complications.

4.4.4 Tumor Markers

Depending on tumor type treated (colorectal metastases or HCC), CEA and AFP levels
are also monitored at regular intervals, often every three months. Preketes et al. [116]
have demonstrated that CEA reduction after cryotherapy for liver metastases from colon
cancer predicts survival, with a 50% increase in the maximum percentage fall in the CEA
level associated with one -tenth the risk of death. In this study an increase in the
maximum percentage fall in CEA of 50% from 25 to 75% was associated with an
increase in the median survival from 240 days to over 2 years.

4.4.5 Results

Zhou et al. [117 - 118] reported the use of cryosurgery for the treatment of 60 patients
with primary liver cancer, beginning in 1973. The procedures were performed at
laparotomy, and epidural anesthesia was used in most cases. Cryosurgery was performed
with a hollow, plate -like probe measuring 3 -5 cm in diameter which was placed in direct
contact with the tumor. Each tumor was subject to 15 -20 minutes of freezing.
Intraoperative ultrasound monitored the progress of ablation. The postoperative course
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was uneventful in all patients, and there was no peri- operative mortality. In addition, no
post -operative complications such as rupture of tumor, secondary bleeding, bile leakage,
or abdominal infection were encountered. Survival at 1, 2, 3, 4, and 5 -years was 52 %,
34 %, 21 %, 16 %, and 11 %, respectively. Among the 21 patients with tumor nodules less
than or equal to 5 cm in diameter, survival was increased to 76 %, 62 %, 50.0 %, 41 %, and
38 %, respectively. In 1993 Zhou et al. [119] reported a larger series of 113 patients with
hepatic cancer, including 107 patients with primary liver cancer and 6 patients with
hepatic metastases, who were treated with cryotherapy using similar technique. Again,
no operative mortality or complications were seen. The 5 -year and 10 -year survival was
22% and 8 %, respectively, for the 107 with HCC and 49% and 17 %, respectively, for the
32 patients with small (< 5 cm) tumors. Of the six treated metastases, survival ranged
from 2 -90 months (mean, 23.2 months).

In 1991, Ravikumar et al. [120] reported their 5 -year experience with cryosurgery for in-
situ ablation of liver tumors. Livers were exposed at laparotomy, and tumors were
subjected to two freeze -thaw cycles using liquid nitrogen delivered via insulated probes.
Cryoablation was monitored using intraoperative ultrasonography. Of the 32 patients in
their study, 24 had colorectal metastases, three had hepatomas; two had neuroendocrine
tumors; and three patients had other forms of malignancy. Tumor response during long-
term follow -up was evaluated with tumor markers and CT. Median follow -up was 24
months, ranging from 5 to 60 months. Disease free survival was seen in 28 %, while 34%
were alive with disease; and 38% died. Treatment failure included both liver and
extrahepatic disease in 54 %, liver disease only in 32 %, and extrahepatic disease only in
14 %.

Preketes [121] treated 94 patients with cryotherapy. Forty two patients with non-
resectable hepatic metastases of colorectal origin underwent cryotherapy combined with
5 -FU and folinic acid chemotherapy via an indwelling hepatic artery port. Mean follow -
up was 432 days, and life -table analysis showed a median survival of 627 days. Eighty
percent of patients with initially elevated CEA levels demonstrated a reduction post-
treatment, and 23% achieved a return to normal CEA levels for a mean duration of 350
days. Regional chemoperfusion for 3 months following cryotherapy was strongly
associated with improved survival.

Cuschieri et al. [122] have developed a multineedle cryotherapy system which permits
the simultaneous use of three insulated cryoneedle probes. Eighteen patients with
secondary and 4 patients with primary liver cancer were treated using this system.
Intraoperative bleeding was encountered in three patients undergoing high - volume
hepatic freezing, but was easily controlled. A slight fall in core body temperature,
averaging 0.4° C, was encountered in 46% of patients. One post- operative death from
liver failure was observed. A right -sided pleural effusion developed in two patients after
freezing of lesions on the superior surface of the right lobe. Forty one percent developed
recurrence at the frozen site or elsewhere in the liver within 12 months of follow -up, and
were thus felt to have derived no clinical benefit from the cryotherapy.

Weaver [123] treated 47 patients with documented colorectal metastases limited to the
liver with cryosurgery and /or surgical resection. Each lesion was frozen to 196° C for 15
minutes, thawed for 10 minutes, and frozen again for 15 minutes using intraoperative
ultrasound guidance. Follow -up was performed for 24 to 57 months (median 26 months)
with CT imaging every six months, and serum CEA levels monthly. Survival at 24
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months was 62 %, with 11% of patients disease free at a median follow -up of 30 months.
Reported complications included myoglobinuria, coagulopathy, pleural effusions, and
bile duct injuries, with two deaths (4 %) occurring because of multisystem organ failure
with irreversible coagulopathy.

Onik et al. [124] have treated 57 patients with unresectable hepatic metastases using
cryosurgery. One to 16 lesions (mean 4.6) were treated in each patient, 73% of which
had bilobar disease. Although 25 patients (42 %) were treated with combined surgical
resection and cryotherapy, disease -free survival was only 27% at a mean follow -up of 21
months.

Kirgan et al. [125] treated 67 patients with liver metastases using cryosurgical ablation.
Thirty seven percent were treated by cryoablation alone, and 63% underwent
cryoablation plus resection and/or infusion chemotherapy. Morbidity was 19 %, and two
patients required re- operation for either bleeding or wound dehiscence. Other
complications included: thrombocytopenia requiring transfusion (4), pleural effusion
requiring thoracentesis (2), renal failure requiring dialysis, ascites, GI / biliary fistula (2),
and pneumonia. Mortality was 1%. The mean postoperative CEA decrease was 56% in
the 74% of patients with colorectal metastases whose CEA levels were elevated
preoperatively.

Shafir [126] treated 39 patients with liver tumors using a liquid nitrogen cryoprobe at
minus 196° C. These patients also received postoperative chemotherapy. Twenty five
patients had colorectal metastases, 3 had gastric tumors, 4 had HCC, 6 had carcinoid
tumors, and one had a gastrinoma. Postoperative transient elevation of liver function
tests and thrombocytopenia were noted in all cases. No operative mortality was
encountered. All patients whose cryoablation was judged to be complete were alive at a
mean follow -up of 14 months. Thirteen patients (33 %) had evidence of recurrent disease
and 20 (51 %) were free of disease. Five patients whose treatment could not be completed
died 3 -9 months postoperatively.

Korpan has also stratified and treated 123 patients with liver metastases in a long -term
prospective, randomized clinical trial using cryotherapy (n = 63) and conventional
surgical techniques (n = 60) [127]. A majority of tumors were of colorectal origin (65%
vs. 68 %). Hepatic cryoablation was performed by means of probes of different roughly
disk design from phi 5 mm to 55 mm which permitted the creation of a frozen tissue
volume of 40 cm3 to 180 cm3 over 7 to 32 minutes. A 3 -year survival rate of 60% was
achieved for cryotherapy vs. 51% for conventional surgery. 5 -year survival was 44%
with cryotherapy and 36% with surgey. Twelve patients (19%) treated with cryotherapy,
versus 5 patients (8 %) treated with surgery, survived 10 years. The disease -free survival
was 30% with cryotherapy and 18% with surgery with intrahepatic tumor recurrence in
54 patients (85 %) and in 57 patients (95 %), respectively. Tuse, this 10 -year prospective,
randomized clinical trial suggests that hepatic cryosurgery is effective in the treatment of
resectable and nonresectable liver metastases with extended survival in these patients.

4.5 HIGH -INTENSITY FOCUSED ULTRASOUND

High -intensity focused ultrasound (HIFU) is a transcutaneous technique which has also
recently been studied as potential method for the minimally invasive treatment of
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localized malignancy [128]. This technique uses a parabolic transducer to focus the
ultrasound energy at a distance which creates a focused beam of energy with very high
peak intensity. This focusing of energy has been likened to using a magnifying glass to
focus sunlight [129]. The focused energy is transmitted transcutaneously into the
targeted tissue without requiring percutaneous insertion of an electrode or transducer.
The ultrasound energy absorbed by tissue is converted to heat, which ablates tissue via
coagulation necrosis. Using a 4 MHz transducer and a power intensity 550 W /cm2 for
five seconds, temperature in excess of 80° C can be produced in rat liver [130]. Areas of
coagulation necrosis have been shown at histopathology to have a spatially sharp
demarcation between regions of normal and necrotic tissue. By using by a suitable
acoustic frequency regions of tissue destruction can be induced at depths of up to at least
10 cm with exposure times of the order of 1 second [131]. One main potential benefit of
HIFU is that the focused ablative energy can destroy a selected target without causing
damage to the intervening tissues. Furthermore, since insertion of a percutaneous probe
is not required, HIFU can be considered the least invasive of the "minimally invasive"
therapies.

4.5.1 Technique

Ultrasound and MR have been used to target the focus of tissue to be treated [128 - 137].
Once this region has been selected, the focused transducer is coupled to the skin with
acoustic coupling gel. Power levels and frequency are selected based upon the depth of
the lesion to be treated and the absorption characteristics of intervening tissues. A
computer is often used to assist in these complex calculations. Current technology can
only produce millimeter sized volumes of coagulated tissue for each HIFU application (1-
5 seconds). Multiple applications of HIFU are therefore necessary to completely treat
lesions of large enough size to be detectable at diagnostic imaging. MR and computer
tracking are often used in an attempt to insure that contiguous coagulation necrosis is
achieved within the tumor, without leaving intervening areas of untreated tumor [132].

4.5.2 Results

Several investigators have studied the effects of HIFU for the treatment of liver tumors in
animal models. At this time, however, results from clinical trials have as of yet been
published. Moore et al. [133] first used a Moms hepatoma model in the rat for this
purpose. Animals were divided into four groups of ten each: 1) untreated controls; 2)
single dose intraperitoneal cyclophosphamide; 3) HIFU only; and 4) both chemotherapy
and HIFU. HIFU was administered with a 5.5 cm diameter 4 MHz quartz transducer at
400 W /cm2 focal intensity. The entire tumor was insonated in 1 mm increments using a
4 second on/11 second off treatment cycle. Tumor volume at four weeks in all treated
animals was significantly smaller than in controls, with tumor volume for animals treated
with both HIFU and chemotherapy significantly smaller than for those treated with either
therapy alone, suggesting a synergistic effect of chemotherapy and HIFU. Yang et al.
[134] used a similar Morris rat hepatoma model in which HIFU was administered with a
lens- focused 4 -MHz transducer at 550 W /cm2 peak intensity. Significant inhibition of
tumor growth (65 % -93 %) was seen in the 56 rats treated with HIFU at 3 -28 days post-
treatment.

Yang et al. [135] further used a transcutaneously focused HIFU system to coagulate
normal liver tissue in rabbits using a subcostal approach. A computer controlled the
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HIFU exposure time and transducer movement in order to destroy a preselected tissue
volume. Simultaneous sonography monitored the tissue response. In nine of ten rabbits,
a sharply demarcated area of coagulation necrosis was produced. No damage was found
in the intervening tissues in the six animals with adequate acoustic coupling and proper
beam path applied. Poor acoustic coupling and poor targeting did however result in
unintended coagulation of intervening tissues of 4 animals. Sibille et al. [136] analyzed
treatment for HIFU in normal and VX2 carcinoma -bearing rabbit liver in 74 rabbits. A 1
MHz transducer with a 7.5 kW power amplifier was used. HIFU energy intensity ranging
from 1,470 to 5,500 W /cm2 and exposure times from 0.5 -5 seconds were studied at a
constant depths within the liver. In normal rabbits, the volume of coagulation necrosis
increased with exposure time at constant intensity, with a negative correlation between
intensity and exposure time. When the output power was adjusted as a function of the
path length, lesion size was nearly constant. In VX2 rabbits, tumor destruction rates were
significantly higher in rabbits treated at 500 W /cm2 than in rabbits treated at 1,365
W /cm2. At intensities of 3,000 W /cm2, perforation of neighboring organs was seen in 7
of 11 rabbits. Prat et al. [137] further studied HIFU using rabbits bearing a solitary VX2
liver tumor. Either one or two consecutive HIFU procedures were used. No mortality
was observed. After one HIFU procedure 76 ± 16% of the initial tumor volume was
destroyed; and 94± 6% of the tumor was destroyed following two HIFU procedures.
Following treatments, the treated tumor was re- injected into the thigh of a second animal.
Untreated hepatic tumors induced tumors at 3 weeks in thighs of all recipient rabbits, but
tumors treated with one HIFU procedure induced tumors in only 31% of cases. Tumors
treated with two HIFU procedures did not induce tumor growth in any recipient.

4.5.3 Limitations

Limitations of HIFU for the treatment of liver neoplasms include the requirement of a
suitably wide acoustic window, as a bone or air interface will limit ultrasound
penetration. Another key limitation to the implementation of HIFU lies in the fact that
only tiny volumes of tissue can be coagulated with each HIFU application. MR tracking
with sequential overlap of the small volumes of coagulation may help to overcome this
problem, however, the long duration of such procedures (lasting upwards of an hour for a
2 cc volume) and issues such as patient and organ motion virtually ensure that uniform
contiguous coagulation will not occur. This is especially relevant to the treatment of liver
lesions, where respiratory motion presents a significant challenge. Larger focal spots
capable of destroying larger volumes of tissue must therefore be developed before this
modality can come into the forefront of tumor therapy.

Recently, Deardorff and Diederich have reported the development of a percutaneously
inserted ultrasound applicator for thermal ablation therapy [43, 138]. The performance
characteristics and thermal coagulation of tissue produced by directional air -cooled,
direct- coupled interstitial ultrasound applicators were evaluated. Prototype applicators (of
2.2 mm diameter) were constructed using cylindrical transducers sectored into angular
active zones of 90 degrees, 200 degrees, 270 degrees, and 360 degrees. Thermal
performance of the applicators was characterized through high temperature heating in-
vivo (porcine thigh muscle, 11 trials) and in -vitro (bovine liver, 46 trials). Results
demonstrated directional coagulation of tissue, with good correlation between the angular
extent of the lesions and the active acoustic sector. Radial depth of coagulation with a
200 degrees applicator extended 8 - 17 mm, with a heating time of 1 - 10 minutes. Thus,
although this device is more invasive than excorporal HIFU, it has the potential to
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overcome several of its limitations including lesion targeting, tissue penetration, and
volume of coagulation.

5. FUTURE TRENDS FOR THERMAL ABLATION THERAPY

The ultimate goal of tumor therapy is complete eradication of all malignant cells. Given
the high likelihood of incomplete treatment by heat based modalities alone, the case for
combining thermal ablation with other therapies such as chemotherapy or
chemoembolization cannot be overstated. A similar, multidisciplinary approach including
surgical, radiation, and chemotherapy is used for the treatment of most solid cancers.
The belief that we can reliably destroy all tumors using only one technique is likely
overly optimistic, given the variety of tumor types and organ sites. Combination therapy
is a key avenue of current ablation research.

Presently, many thermal ablation devices are being studied with multiple commercial
devices now becoming available. Given the rapid pace of evolution in the state of the art
for ablation technologies, it is too early to confidently predict which method (if any) will
prove dominant for any given clinical application. Competitive technologies must be
able to ablate the desired volume of tissue in a reproducible and predictable fashion.
However, it is more than likely that other factors, including ease of clinical use and cost,
will play a role in determining which of these technologies will receive the greatest
attention.

6. CONCLUSIONS

Percutaneous, image -guided thermal ablation therapy is an exciting and emerging arena
that has thus far provided optimistic preliminary results for the minimally- invasive
treatment of selected focal hepatic neoplasms. These minimally invasive techniques offer
several distinct advantages over the conventional surgical approach to the treatment of
small hepatic malignancies, in that they are 1) less invasive, 2) less expensive, and 3) can
be performed on an outpatient basis using conscious sedation. Multiple studies have
demonstrated that these treatments can cause destruction of tumor with low morbidity
and mortality, though best results have been seen with lesions smaller than 3 cm.
However, further experience, with larger cohorts of patients followed for longer periods
of time are required in order to better understand the efficacy and appropriate role for
these therapies.

Key questions that still need to be addressed include: definition optimal methods and
techniques for heating tumors; identification of optimal diagnostic imaging strategies to
guide therapy and clinical follow -up; and determination of clinical impact. For tumor
heating, one must consider both which technical innovations will enable efficient and
efficacious energy deposition, and which biologic factors can be successfully modulated
to increase heat deposition and retention within the treated tumor. The answers to these
questions will require substantial further research, which is ongoing at multiple tertiary
centers. It is hoped that this work, and well conducted randomized, multi -center trials
will determine the proper role for this promising, new paradigm of thermal ablation and
the role for these technologies. Given the pace of recent technologic development for
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and mortality, though best results have been seen with lesions smaller than 3 cm. 
However, further experience, with larger cohorts of patients followed for longer periods 
of time are required in order to better understand the efficacy and appropriate role for 
these therapies.

Key questions that still need to be addressed include: definition optimal methods and 
techniques for heating tumors; identification of optimal diagnostic imaging strategies to 
guide therapy and clinical follow-up; and determination of clinical impact. For tumor 
heating, one must consider both which technical innovations will enable efficient and 
efficacious energy deposition, and which biologic factors can be successfully modulated 
to increase heat deposition and retention within the treated tumor. The answers to these 
questions will require substantial further research, which is ongoing at multiple tertiary 
centers. It is hoped that this work, and well conducted randomized, multi-center trials 
will determine the proper role for this promising, new paradigm of thermal ablation and 
the role for these technologies. Given the pace of recent technologic development for
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many of the methods discussed, further technologic advances allowing for easier and
more efficacious treatment of hepatic malignancies are anticipated in the near future.
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