A novel design of X-ray spectroscopic photon sieves (SPS) was realized to eliminate the higher diffraction orders. SPS gratings consist of randomly distributed circular holes, forming an approximately sinusoidal transmission function. Due to the intensive absorption of soft X-rays in any known material, these gold nanoholes are free-standing without supporting membrane. For applications in soft X-ray region, a hybrid lithographic method was used to manufacture spectroscopic photon sieves (SPS) of 1000 lines/mm in high throughput. In the fabrication process, an electron beam was focused to write patterns on the membrane substrate to achieve a master mask. Using this mask XRL and gold electroplating were performed to efficiently replicate SPS structures. After that, UVL was used to define the supporting coarse frame. In the replication process of XRL, the deviation of circle patterns caused by overheating problem in exposure has been resolved by inserting appropriate filters in X-ray beam path. The spectrum of X-ray source for exposure can be restricted in the 1.0- 2.0 keV energy band. Therefore, less heat are produced in exposure due to less absorption of higher energy X-rays in resist. After the SPS has been finished, the diffraction pattern was achieved at the soft X-ray beam line on Beijing Synchrotron Radiation Facility. The calibration results show that higher-order diffraction orders were efficiently suppressed along the axis of symmetry.
|