PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
This PDF file contains the front matter associated with SPIE Proceedings Volume 10465, including the Title Page, Copyright information, Table of Contents, Introduction (if any), and Conference Committee listing.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
In this paper, the resource allocation in an underlay cognitive radio network is considered, in which the SUs can operate on the same spectrum band with the primary users simultaneously. In order to maximize the total throughput of SUs, an optimal selection matching (OSM) algorithm is proposed to allocate the resource in the underlay cognitive radio network. It makes every SU find the satisfied spectrum resource, and meanwhile the interference from SUs is induced. Simulation results show that the proposed algorithm has the significant improvement in total throughput compared with others.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Broadcast authentication is used to determine legitimate packet from authorized user. The received packet can be forwarded or used for the further purpose. The use of digital signature is one of the compromising methods but it is followed by high complexity especially in the verification process. That phenomenon is used by the adversary to force the user to verify a lot of false packet data. Kind of Denial of Service (DoS) which attacks the main signature can be mitigated by using pre-authentication methods as the first layer to filter false packet data. The objective of the filter is not replacing the main signature but as an addition to actual verification in the sensor node. This paper contributes in comparing the cost of computation, storage, and communication among several filters. The result shows Pre- Authenticator and Dos Attack-Resistant scheme have the lower overhead than the others. Thus followed by needing powerful sender. Moreover, the key chain is promising methods because of efficiency and effectiveness.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Throughput, delay and collision probability are all the important performance for cognitive radio networks. This paper proposes a state transition model and analyzes the performances of the cognitive radio networks with spectrum sensing and access operate simultaneously and conventional cognitive radio networks. The closed form expressions of the throughput, delay and collision probability in two sensing modes are derived. It is showed that the cognitive radio networks with spectrum sensing and access operate simultaneously has obvious advantage over the conventional one in the throughput, delay and collision probability. Simulation results verify the theoretical analysis.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
In this paper, we present a multiband phase-modulated radio over intersatellite optical wireless communication (IsOWC) link with balanced coherent homodyne detection. The proposed system can provide high linearity for transparent transport of multiband radio frequency (RF) signals and better receiver sensitivity than intensity modulated with direct detection (IM/DD) system. The exact analytical expression of signal to noise and distortion ratio (SNDR) is derived considering the third-order intermodulation product and amplifier spontaneous emission (ASE) noise. Numerical results of SNDR with various number of subchannels and modulation index are given. Results indicate that the optimal modulation index exists to maximize the SNDR. With the same system parameters, the value of the optimal modulation index will decrease with the increase of number of subchannels.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Most studies on localization algorithms are conducted on the sensor networks with densely distributed nodes. However, the non-localizable problems are prone to occur in the network with sparsely distributed sensor nodes. To solve this problem, a range-based predictive localization algorithm (RPLA) is proposed in this paper for the wireless sensor networks syncretizing the RFID (WSID) networks. The Gaussian mixture model is established to predict the trajectory of a mobile target. Then, the received signal strength indication is used to reduce the residence area of the target location based on the approximate point-in-triangulation test algorithm. In addition, collaborative localization schemes are introduced to locate the target in the non-localizable situations. Simulation results verify that the RPLA achieves accurate localization for the network with sparsely distributed sensor nodes. The localization accuracy of the RPLA is 48.7% higher than that of the APIT algorithm, 16.8% higher than that of the single Gaussian model-based algorithm and 10.5% higher than that of the Kalman filtering-based algorithm.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
This paper considers a wireless-powered amplify-and-forward relay network with a large number of relays. Each relay node is equipped with a single antenna and harvests energy from its received signal with a power splitter. With the harvested power, each relay node forwards the residual received signal to the destination node with distributed beamforming. We investigate the impact of the power splitting ratio and the number of the relays on the system performance, and derive a closed-form expression for the asymptotic signal-to-noise ratio (SNR) when the number of relays goes large. Numerical results are presented to demonstrate the performance of the proposed scheme.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
A kind of coplanar waveguide triple-band antenna based on defected ground structure is proposed, which has novel structure. Three batches with different frequency band are constructed by utilizing line combination, overlapping, and symmetry method. Stop band signals among three frequency bands are effectively suppressed by slots with different structures. More satisfactory impedance matching is realized by means of changing slot structure and improving return-loss. The presented antenna can operates simultaneously in various systems such as 3G / 4G wireless communication, Bluetooth, Worldwide Interoperability for Microwave Access, Wireless LAN. Test results show that the antenna has good radiation and gain in its working frequency band, and that it has great application potentials.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Femtocell is a small low power base station for maximizing the indoor coverage and capacity for cellular users. These base stations can serve users with different access policies. As the Macrocell shares its limited resource - spectrum with the underlying Femtocell, there is a need for efficient resource allocation strategy that benefits all types of users, especially when user density is more and depends on the sub-carrier availability, users‟ quality of service requirements. This paper proposes a resource allocation strategy to model different user requirements in a dense environment. The approach selects locally optimal solution based on the users‟ priority and give fair trade-off between various network parameters without degrading the overall system capacity.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Wireless sensor networking (WSN) has been rapidly developed and become essential in various domains including health care systems. Such systems use WSN to collect real-time medical sensed data, aiming at improving the patient safety. For instance, patients suffered from adverse events, i.e., cardiac or respiratory arrests, are monitored so as to prevent them from getting harm. Sensors are placed on, in or near the patients’ body to continuously collect sensing data such as the electrocardiograms, blood oxygenation, breathing, and heart rate. In this case, the sensors form a subcategory of WSN called wireless body area network (WBAN). In WBAN, sensing data are sent to one or more data collection points called personal server (PS). The role of PS is important since it forwards sensed data, to a medical server via a Bluetooth/WLAN connection in real time to support storage of information and real-time diagnosis, the device can also issue a notification of an emergency status. Since PS is a battery-based device, when its battery is empty, it will disconnect the sensed medical data with the rest network. To best of our knowledge, very few studies that focus on saving energy for the PS. To this end, this work investigates the trade-off between energy consumption for wireless communication and the amount of sensing data. An energy consumption model for wireless communication has been proposed based on direct measurement using real testbed. According to our findings, it is possible to save energy for the PS by selecting suitable wireless technology to be used based on the amount of data to be transmitted.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Electric power is one of the basic requirement for socio economic and social prosperity of any country, which is mainly employs for domestic, industrial and agricultural sectors. The primary purpose of this research is to design and implement an energy meter which can remotely control and monitor through global system for mobile (GSM) communication technology. For this purpose, a single phase or three phase digital energy meters are used to add on different advanced modules. The energy meter can be activated and display power consumption information at the consumer premises on liquid crystal display and through a short message service (SMS) by using GSM technology. At the power sending end, an energy meter can be remotely control and monitor through GSM technology without any system disturbances. This study will lead to make the system easier, economical, reliable and efficient for the electrical department.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Crack is one of the primary faults in pipes, and its detection is a significant measure to ensure the safety of pipes. The feasibility of circumferential crack detection in pipes on the basis of fiber Bragg grating (FBG) detection technology is discussed through experimental research. Crack is formed on the surface of a metal pipe, the circumferential length of crack is one index of the damage degree. In the experiments, both electronic vibration sensor and FBG strain sensors are used to collect response signals of impulse excitation in different damage degrees. Furthermore, the characteristics of damage detection are analysed in both frequency domain and time domain. First, the natural frequencies are compared between practical and simulated results in different damage degrees of pipes; second, the multi-fractal detrended fluctuation analysis (MFDFA) is applied to acquire the singular values α as the characteristic parameter. The experimental results indicate that FBG strain sensors can perceive the impulse response of the pipe and change in different damage degrees effectively, like the vibration sensor. And both the natural frequency and the singular value are sensitive to increasing length of crack, they are able to distinguish different degrees of crack on the pipe.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Twin Rotor MIMO System (TRMS) is a bench mark system to test flight control algorithms. One of the perturbations on TRMS which is likely to affect the control system is actuator failure. Therefore, there is a need for a reliable control system, which includes H infinity controller along with redundant actuators. Reliable control refers to the design of a control system to tolerate failures of a certain set of actuators or sensors while retaining desired control system properties. Output of reliable controller has to be transferred to the redundant actuator effectively to make the TRMS reliable even under actual actuator failure.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.