Presentation
18 September 2018 Electrical-driven plasmon source on silicon based on quantum tunneling (Conference Presentation)
Author Affiliations +
Abstract
An efficient silicon-based light source presents an unreached goal in the field of photonics, due to Silicon’s indirect electronic band structure preventing direct carrier recombination and subsequent photon emission. Here we utilize inelastically tunneling electrons to demonstrate an electrically-driven light emitting silicon-based tunnel junction operating at room temperature. We show that such a junction is a source for plasmons driven by the electrical tunnel current. We find that the emission spectrum is not given by the quantum condition where the emission frequency would be proportional to the applied voltage, but the spectrum is determined by the spectral overlap between the energy-dependent tunnel current and the modal dispersion of the plasmon. Experimentally we find the highest light outcoupling efficiency corresponding to the skin-depth of the metallic contact of this metal-insulator-semiconductor junction. Distinct from LEDs, the temporal response of this tunnel source is not governed by nanosecond carrier lifetimes known to semiconductors, but rather by the tunnel event itself and Heisenberg’s uncertainty principle. Finally We discuss a path for single photon emission via the Coulomb blockade effect leading to single electron tunneling.
Conference Presentation
© (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Hasan Göktas, Fikri Serdar Gökhan, and Volker J. Sorger "Electrical-driven plasmon source on silicon based on quantum tunneling (Conference Presentation)", Proc. SPIE 10734, Quantum Nanophotonics 2018, 107340M (18 September 2018); https://doi.org/10.1117/12.2322069
Advertisement
Advertisement
KEYWORDS
Silicon

Plasmons

Electrons

Dispersion

Light emitting diodes

Light sources

Photonics

RELATED CONTENT


Back to Top