The compressibility of an image increases with blurring, whereby the relation between the compression ratio (CR) and the blurring scale is almost linear. Hence, by convolving by way of a localised response function (i.e. a linear kernel) and thereby blurring an image before compression, the CR will increase accordingly. In this novel process the response function is applied to a fractal one-dimensional representation of a given image. A blurred image is thus created, which can be shown to contain the details of the original image and thereby restored by reversing the blurring process. The implications of increased CR are examined in terms of the quality of the reconstructed images. |
ACCESS THE FULL ARTICLE
No SPIE Account? Create one
Image compression
Image processing
Image restoration
Convolution
Chromium
Data communications
Image storage