Presentation + Paper
1 March 2019 Multiplexed pixelated hologram recording process for retinal projection device
Author Affiliations +
Abstract
From the first ultra-realistic 3D images in the sixties to the most recent Augmented Reality devices, the field of holography has been involved in display technology for a long time. The spectral selectivity of the hologram reflection together with the very good transparency of the holographic material make it a suitable option for some of the key optical components in smart glasses. However, these devices are still very limited by the overall optical system based on the conventional scheme Display - Optical System - Combiner. Recently, we have proposed an unconventional scheme that puts the hologram at the core of the display device. Due to its 3D nanoscale complexity, the dynamic updatable hologram display is still an unreachable goal. As an alternative, our configuration is based on a concept of switchable static holographic elements. These elements are interleaved on the surface of the display and form various groups of emissive point distributions that are phase-adjusted for given angular directions. The activation of these holographic elements produces angular planar wavefronts in the far field and the display is expected to achieve retinal projection without the help of an optical system. We present our concept and describe the development of the optical set-up used to investigate our holographic configuration. We record phase-adjusted distributions of holographic elements that are multiplexed on the surface of our sample, each distribution targeting a specific angular direction. First recording results on a holographic photopolymer are given.
Conference Presentation
© (2019) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Christophe Martinez, Basile Meynard, and Yann Lee "Multiplexed pixelated hologram recording process for retinal projection device", Proc. SPIE 10944, Practical Holography XXXIII: Displays, Materials, and Applications, 109440N (1 March 2019); https://doi.org/10.1117/12.2507249
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Holograms

Holography

Multiplexing

Image processing

Holographic materials

Back to Top