PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
For breast cancer imaging by ultrasound computed tomography (CT) without dependence on patient breast size, we previously developed a high-sensitivity scan method in which a virtual fan-beam (vfan-beam) is generated from ultrasound waves emitted from 128 sources with unique delay times. Full waveform inversion (FWI) with multiple sound sources has not been previously applied to ultrasound CT using a ring transducer array. We have now developed a FWI calculation process that enables a vfan-beam to generate accurate sound speed images. A vfan-beam is accurately modeled by positioning the 128 sources and considering the delay times. The performance of the FWI calculation process with a vfan-beam was evaluated using a prototype ultrasound CT. For a circular phantom, the spatial resolution of a FWI image obtained with a vfan-beam was better than that of a filtered back projection (FBP) image. The image contrast of the FWI calculation process with a vfan-beam was comparable to that of the process with a conventional fanbeam generated from a single source. For a high-attenuation ellipse phantom, the sound speed image obtained with a conventional fan-beam had severe artifacts due to the low signal to noise ratio (SNR). Using a vfan-beam reduced the number of artifacts in the images due to the higher SNR. The FWI calculation process with a vfan-beam visualized a 3 mm inclusion more clearly than the FBP process. A measurement study demonstrated that the FWI process with a vfanbeam with a high SNR reduced the number of artifacts in the sound speed images and improved the spatial resolution for a high-attenuation breast.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.