Paper
9 September 2019 T2SL meta-surfaced digital focal plane arrays for Earth remote sensing applications
Sarath Gunapala, Sir Rafol, David Ting, Alexander Soibel, Arezou Khoshakhlagh, Sam Keo, Brian Pepper, Anita Fisher, Cory Hill, Kwong-Kit Choi, Arvind D'Souza, Christopher Masterjohn, Sachidananda Babu, Parminder Ghuman
Author Affiliations +
Abstract
Long-wavelength infrared (LWIR) focal plane arrays (FPAs) needed for Earth Science imaging, spectral imaging, and sounding applications have always been among the most challenging in infrared photodetector technology due to the rigorous material growth, device design and fabrication demands. Future small satellite missions will present even more challenges for LWIR FPAs, as operating temperature must be increased so that cooler (and radiator) volume, mass, and power can be reduced. To address this critical need, we are working on following three technologies. 1) Type-II superlattice (T2SL) barrier infrared detector (BIRD), which combines the high operability, spatial uniformity, temporal stability, scalability, producibility, and affordability advantages of the quantum well infrared photodetector (QWIP) FPA with the better quantum efficiency and dark current characteristics. A mid-wavelength infrared (MWIR) T2SL BIRD FPA is a key demonstration technology in the (6U) CubeSat Infrared Atmospheric Sounder (CIRAS) funded under the ESTO InVEST Program. A LWIR T2SL BIRD FPA is also being developed under the ESTO SLI-T Program for future thermal infrared (TIR) land imaging needs. 2) The resonator pixel technology, which uses nanophotonics light trapping techniques to achieve strong absorption in a small detector absorber volume, thereby enabling enhanced QE and/or reduced dark current. 3) High dynamic range 3D Readout IC (3DROIC), which integrates a digital reset counter with a conventional analog ROIC to provide a much higher effective well capacity than previously achievable. The resulting longer integration times are especially beneficial for high flux/dark current LWIR applications as they can improve signal-to-noise ratio and/or increase the operating temperature. By combining the aforementioned technologies, this project seeks to demonstrate a cost-effective, high-performance LWIR FPA technology with significantly higher operating temperature and sensitivity than previously attainable, and with the flexibility to meet a variety of Earth Science TIR measurement needs, particularly the special requirements of small satellite missions.
© (2019) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Sarath Gunapala, Sir Rafol, David Ting, Alexander Soibel, Arezou Khoshakhlagh, Sam Keo, Brian Pepper, Anita Fisher, Cory Hill, Kwong-Kit Choi, Arvind D'Souza, Christopher Masterjohn, Sachidananda Babu, and Parminder Ghuman "T2SL meta-surfaced digital focal plane arrays for Earth remote sensing applications", Proc. SPIE 11129, Infrared Sensors, Devices, and Applications IX, 111290C (9 September 2019); https://doi.org/10.1117/12.2533477
Lens.org Logo
CITATIONS
Cited by 2 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Staring arrays

Long wavelength infrared

Sensors

Quantum efficiency

Infrared detectors

Readout integrated circuits

Resonators

Back to Top