In the past two decades, various super-resolution fluorescence microscopic techniques have achieved an axial resolution on the order of tens of nanometers and been applied for a wide range of biological studies. However, these imaging techniques still face technical challenges to reach a resolution below 10 nm. Moreover, the required complex system for these techniques limits their wide applications in practice. In this talk, we present a new cellular fluorescence imaging method with a nanometer-scale axial resolution, based on a distance-dependent photobleaching suppression of fluorophores on hyperbolic metamaterial. We will show that by applying this technology to image HeLa cell membranes tagged with fluorescent proteins, an axial resolution of ~3 nm at multiple colors can be achieved, allowing for a precise determination of the architecture of cell adhesion.
|