At present, high myopia has become a hot spot for eye diseases worldwide because of its increasing prevalence. Linear lesion is an important clinical signal in the pathological changes of high myopia. ICGA is considered to be the “Ground Truth” for the diagnosis of linear lesions, but it is invasive and may cause adverse reactions such as allergy, dizziness, and even shock in some patients. Therefore, it is urgent to find a non-invasive imaging modality to replace ICGA for the diagnosis of linear lesions. Multi-color scanning laser (MCSL) imaging is a non-invasive imaging technique that can reveal linear lesion more richly than other non-invasive imaging technique such as color fundus imaging and red-free fundus imaging and some other invasive one such as fundus fluorescein angiography (FFA). To our best knowledge, there are no studies focusing on the linear lesion segmentation based on MCSL images. In this paper, we propose a new U-shape based segmentation network with multi-scale and global context fusion (SGCF) block named as SGCNet to segment the linear lesion in MCSL images. The features with multi-scales and global context information extracted by SGCF block are fused by learnable parameters to obtain richer high-level features. Four-fold cross validation was adopted to evaluate the performance of the proposed method on 86 MCSL images from 57 high myopia patients. The IoU coefficient, Dice coefficient, Sensitivity coefficient and Specialty are 0.494±0.109, 0.654±0.104, 0.676±0.131 and 0.998±0.002, respectively. Experiment results indicate the effectiveness of the proposed network.
|