The ever-increasing complexity of materials and architectures in nanoelectronics devices has driven the demand for new high-resolution imaging methods. Specifically, for three-dimensional (3D) analysis of confined volumes, atomic force microscopy (AFM) has been recently explored as a method for tomographic sensing. Here, we report on the innovative design of a dedicated microscopy solution for volumetric nanoscale analyses that achieves tomographic AFM by using a novel multi-probe sensing architecture. First, we describe the development of a custom scan head that is based on an exchangeable multi-probe hardware. Second, we demonstrate the use of our machine for tip-induced material removal in thick SiO2. Finally, we perform a tomographic reconstruction of nanosized poly-Si vertical channels, considered here as a prototypical system for vertical memory cells.
|