Paper
5 March 2021 Application of nanoindentation technique to test surface hardness and residual stress of NiTi alloy after femtosecond laser shock peening
Author Affiliations +

REFERENCES

[1] 

E.O. Nasakina, M.A. Sevostyanov, A.S. Baikin, A. V Seryogin, S. V Konushkin, K. V Sergienko, A. V Leonov, A.G. Kolmakov, Applications of nanostructural NiTi alloys for medical devices, in: Shape Mem. Alloy. Appl., InTechOpen, 2017. Google Scholar

[2] 

K. Otsuka, C.M. Wayman, Shape memory materials, Cambridge university press, 1999. Google Scholar

[3] 

S. Samal, O. Tyc, L. Heller, P. Šittner, M. Malik, P. Poddar, M. Catauro, I. Blanco, Study of interfacial adhesion between nickel-titanium shape memory alloy and a polymer matrix by laser surface pattern, Appl. Sci. 10 (2020) 2172. https://doi.org/10.3390/app10062172 Google Scholar

[4] 

Z. Mohammadi, M.K. Soltani, S. Shalavi, S. Asgary, A review of the various surface treatments of NiTi instruments, Iran. Endod. J. 9 (2014) 235. Google Scholar

[5] 

K.W. Ng, H.C. Man, T.M. Yue, Corrosion and wear properties of laser surface modified NiTi with Mo and ZrO2, Appl. Surf. Sci. 254 (2008) 6725–6730. https://doi.org/10.1016/j.apsusc.2008.04.076 Google Scholar

[6] 

Z.D. Cui, H.C. Man, F.T. Cheng, T.M. Yue, Cavitation erosion–corrosion characteristics of laser surface modified NiTi shape memory alloy, Surf. Coatings Technol. 162 (2003) 147–153. https://doi.org/10.1016/S0257-8972(02)00399-7 Google Scholar

[7] 

X. Liu, S. Wu, Y.L. Chan, P.K. Chu, C.Y. Chung, C.L. Chu, K.W.K. Yeung, W.W. Lu, K.M.C. Cheung, K.D.K. Luk, Structure and wear properties of NiTi modified by nitrogen plasma immersion ion implantation, Mater. Sci. Eng. A. 444 (2007) 192–197. https://doi.org/10.1016/j.msea.2006.08.071 Google Scholar

[8] 

L. Tan, R.A. Dodd, W.C. Crone, Corrosion and wear-corrosion behavior of NiTi modified by plasma source ion implantation, Biomaterials. 24 (2003) 3931–3939. https://doi.org/10.1016/S0142-9612(03)00271-0 Google Scholar

[9] 

T. Hu, C.S. Wen, G.Y. Sun, S.L. Wu, C.L. Chu, Z.W. Wu, G.Y. Li, J. Lu, K.W.K. Yeung, P.K. Chu, Wear resistance of NiTi alloy after surface mechanical attrition treatment, Surf. Coatings Technol. 205 (2010) 506–510. https://doi.org/10.1016/j.surfcoat.2010.07.023 Google Scholar

[10] 

X. Wang, Y. Bellouard, J.J. Vlassak, Laser annealing of amorphous NiTi shape memory alloy thin films to locally induce shape memory properties, Acta Mater. 53 (2005) 4955–4961. https://doi.org/10.1016/j.actamat.2005.07.022 Google Scholar

[11] 

S. Yang, W.H. Li, H.C. Man, Laser cladding of HA/Ti composite coating on NiTi alloy, Surf. Eng. 29 (2013) 409–431. https://doi.org/10.1179/1743294413Y.0000000115 Google Scholar

[12] 

R. Zhang, S. Mankoci, N. Walters, H. Gao, H. Zhang, X. Hou, H. Qin, Z. Ren, X. Zhou, G.L. Doll, Effects of laser shock peening on the corrosion behavior and biocompatibility of a nickel–titanium alloy, J. Biomed. Mater. Res. Part B Appl. Biomater. 107 (2019) 1854–1863. https://doi.org/10.1002/jbm.b.v107.6 Google Scholar

[13] 

C.H. Ng, O.K. Chan, H.C. Man, Formation of TiN grid on NiTi by laser gas nitriding for improving wear resistance in Hanks’ solution, J. Mater. Sci. Technol. 32 (2016) 459–464. https://doi.org/10.1016/j.jmst.2016.01.012 Google Scholar

[14] 

H. Wang, R. Nett, E.L. Gurevich, A. Ostendorf, The Effect of Laser Nitriding on Surface Characteristics and Wear Resistance of NiTi Alloy with Low Power Fiber Laser, Appl. Sci. 11 (2021) 515. https://doi.org/10.3390/app11020515 Google Scholar

[15] 

T. Sano, T. Eimura, R. Kashiwabara, T. Matsuda, Y. Isshiki, A. Hirose, S. Tsutsumi, K. Arakawa, T. Hashimoto, K. Masaki, Femtosecond laser peening of 2024 aluminum alloy without a sacrificial overlay under atmospheric conditions, J. Laser Appl. 29 (2017) 12005. https://doi.org/10.2351/1.4967013 Google Scholar

[16] 

C. Lu, L. Ge, B. Zhu, Y. Li, X. Chen, X. Zeng, Y. Chen, Effective femtosecond laser shock peening on a Mg – 3Gd alloy at low pulse energy 430 μJ of 1 kHz, J. Magnes. Alloy. 7 (2019) 529–535. https://doi.org/10.1016/j.jma.2019.05.005 Google Scholar

[17] 

U. Trdan, T. Sano, D. Klobčar, Y. Sano, J. Grum, R. Šturm, Improvement of corrosion resistance of AA2024-T3 using femtosecond laser peening without protective and confining medium, Corros. Sci. 143 (2018) 46–55. https://doi.org/10.1016/j.corsci.2018.08.030 Google Scholar

[18] 

Y. Li, Z. Ren, X. Jia, W. Yang, N. Nassreddin, Y. Dong, C. Ye, A. Fortunato, X. Zhao, The effects of the confining medium and protective layer during femtosecond laser shock peening, Manuf. Lett. 27 (2021) 26–30. https://doi.org/10.1016/j.mfglet.2020.11.006 Google Scholar

[19] 

N. Maharjan, Z. Lin, D.T. Ardi, L. Ji, M. Hong, Laser peening of 420 martensitic stainless steel using ultrashort laser pulses, Procedia CIRP. 87 (2020) 279–284. https://doi.org/10.1016/j.procir.2020.02.062 Google Scholar

[20] 

F. Pickhardt, J.S. Hoppius, E.L. Gurevich, Femtosecond laser shock peening of galvanized stainless steel, Procedia CIRP. 74 (2018) 320–323. https://doi.org/10.1016/j.procir.2018.08.124 Google Scholar

[21] 

M. Kattoura, S.R. Mannava, D. Qian, V.K. Vasudevan, Effect of laser shock peening on elevated temperature residual stress, microstructure and fatigue behavior of ATI 718Plus alloy, Int. J. Fatigue. 104 (2017) 366–378. https://doi.org/10.1016/j.ijfatigue.2017.08.006 Google Scholar

[22] 

T. Kawashima, T. Sano, A. Hirose, S. Tsutsumi, K. Masaki, K. Arakawa, H. Hori, Femtosecond Laser Peening of Friction Stir Welded 7075-T73 Aluminum Alloys, J. Mater. Process. Technol. (2018). https://doi.org/10.1016/j.jmatprotec.2018.06.022 Google Scholar

[23] 

C.A. Taylor, M.F. Wayne, W.K.S. Chiu, Residual stress measurement in thin carbon films by Raman spectroscopy and nanoindentation, Thin Solid Films. 429 (2003) 190–200. https://doi.org/10.1016/S0040-6090(03)00276-1 Google Scholar

[24] 

C.A. Charitidis, D.A. Dragatogiannis, E.P. Koumoulos, I.A. Kartsonakis, Residual stress and deformation mechanism of friction stir welded aluminum alloys by nanoindentation, Mater. Sci. Eng. A. 540 (2012) 226–234. https://doi.org/10.1016/j.msea.2012.01.129 Google Scholar

[25] 

A. Bolshakov, W.C. Oliver, G.M. Pharr, Influences of stress on the measurement of mechanical properties using nanoindentation: Part II. Finite element simulations, J. Mater. Res. 11 (1996) 760–768. https://doi.org/10.1557/JMR.1996.0092 Google Scholar

[26] 

Z.-H. Xu, X. Li, Influence of equi-biaxial residual stress on unloading behaviour of nanoindentation, Acta Mater. 53 (2005) 1913–1919. https://doi.org/10.1016/j.actamat.2005.01.002 Google Scholar

[27] 

S. Ghanbari, D.F. Bahr, An energy-based nanoindentation method to assess localized residual stresses and mechanical properties on shot-peened materials, J. Mater. Res. 34 (2019) 1121–1129. https://doi.org/10.1557/jmr.2019.41 Google Scholar

[28] 

M. Sakai, Y. Nakano, Elastoplastic load–depth hysteresis in pyramidal indentation, J. Mater. Res. 17 (2002) 2161–2173. https://doi.org/10.1557/JMR.2002.0318 Google Scholar

[29] 

Q. Wang, K. Ozaki, H. Ishikawa, S. Nakano, H. Ogiso, Indentation method to measure the residual stress induced by ion implantation, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 242 (2006) 88–92. Google Scholar

Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Femtosecond phenomena

Metals

Coating

Back to Top