Presentation + Paper
5 March 2021 Quartz-enhanced photoacoustic spectroscopy for CO detection in SF6 decomposition
Author Affiliations +

REFERENCES

[1] 

Li, Q., Cong, H., Xing, J., Qi, B. and Li, C., “On-line Temperature Monitoring of the GIS Contacts Based on Infrared Sensing Technology,” J. Electr. Eng. Technol. 9(4), 1385–1393 (2014). https://doi.org/10.5370/JEET.2014.9.4.1385 Google Scholar

[2] 

Istad, M. and Runde, M., “Thirty-six years of service experience with a national population of gas-insulated substations,” IEEE Trans. Power Deliv. 25(4), 2448–2454 (2010). https://doi.org/10.1109/TPWRD.2010.2050705 Google Scholar

[3] 

Ma, G. M., Wu, Z., Zhou, H. Y., Jiang, J., Chen, W. X., Zheng, S. S., Li, C. R., Li, X. and Wang, Z. Bin., “A Wireless and Passive Online Temperature Monitoring System for GIS Based on Surface-Acoustic-Wave Sensor,” IEEE Trans. Power Deliv. 31(3), 1270–1280 (2016). https://doi.org/10.1109/TPWRD.2015.2482985 Google Scholar

[4] 

Xiao, D., “Insulation Characteristics of Sulfur Hexafluoride (SF6),” Springer, Berlin, Heidelberg, 195–229 (2016).Xiao, D., “Insulation Characteristics of Sulfur Hexafluoride (SF6),” Springer, Berlin, Heidelberg, 195–229 (2016).

[5] 

Kline, L. E., Davies, D. K., Chen, C. L. and Chantry, P. J., “Dielectric properties for SF 6 and SF 6 mixtures predicted from basic data,” J. Appl. Phys. 50, 6789 (1979). https://doi.org/10.1063/1.325814 Google Scholar

[6] 

Tang, J., Liu, F., Zhang, X., Meng, Q. and Zhou, J., “Partial discharge recognition through an analysis of SF 6 decomposition products part 1: Decomposition characteristics of SF 6 under four different partial discharges,” IEEE Trans. Dielectr. Electr. Insul. 19(1), 29–36 (2012). https://doi.org/10.1109/TDEI.2012.6148499 Google Scholar

[7] 

Zhang, X., Tie, J. and Zhang, J., “A Pt-Doped TiO 2 Nanotube Arrays Sensor for Detecting SF 6 Decomposition Products,” Sensors 13, 14764–14776 (2013). https://doi.org/10.3390/s131114764 Google Scholar

[8] 

Luo, J., Fang, Y. H., Zhao, Y. D., Wang, A. J., Li, D. C., Li, Y. Y., Liu, Y., Cui, F. X., Wu, J. and Liu, J. X., “Research on the detection of SFinf6/inf decomposition products based on non-resonant photoacoustic spectroscopy,” Anal. Methods 7(3), 1200–1207 (2015). https://doi.org/10.1039/C4AY02648A Google Scholar

[9] 

Fan, X., Li, L., Zhou, Y., Tang, N., Zou, Z., Li, X., Huang, G. and Liu, M., “Online detection technology for SF6 decomposition products in electrical equipment: A review,” IET Sci. Meas. Technol. 12(6), 707–711 (2018). https://doi.org/10.1049/smt2.v12.6 Google Scholar

[10] 

Yan, X., Song, G., Wang, C., Ji, Y., Yang, R., Jian, Y. and Liu, H., “Gas-insulated switchgear state monitoring based on SF6 decomposition products detection,” Dianli Zidonghua Shebei/Electric Power Autom. Equip. 34(6) (2014). Google Scholar

[11] 

Kóréh, O., Rikker, T., Molnár, G., Mahara, B. M., Torkos, K. and Borossay, J., “Study of decomposition of sulphur hexafluoride by gas chromatography/mass spectrometry,” Rapid Commun. Mass Spectrom. 11(15), 1643–1648 (1997). https://doi.org/10.1002/(ISSN)1097-0231 Google Scholar

[12] 

Casanovas, A. M., Casanovas, J., Lagarde, F. and Belarbi, A., “Study of the decomposition of SF6 under dc negative polarity corona discharges (point-to-plane geometry): Influence of the metal constituting the plane electrode,” J. Appl. Phys. 72(8), 3344–3354 (1992). https://doi.org/10.1063/1.351456 Google Scholar

[13] 

Volpe, A., Paiè, P., Ancona, A. and Osellame, R., “Polymeric fully inertial lab-on-a-chip with enhanced-throughput sorting capabilities,” Microfluid. Nanofluidics 23(3) (2019). https://doi.org/10.1007/s10404-019-2206-1 Google Scholar

[14] 

Hergli, R., Casanovas, J., Derdouri, A., Grob, R. and Mathieu, J., “Study of the Decomposition of SF6 in the Presence of Water, Subjected to Gamma Irradiation or Corona Discharges,” IEEE Trans. Electr. Insul. 23(3), 451–465 (1988). https://doi.org/10.1109/14.2387 Google Scholar

[15] 

Cui, R., Dong, L., Wu, H., Li, S., Zhang, L., Ma, W., Yin, W., Xiao, L., Jia, S. and Tittel, F. K., “Highly sensitive and selective CO sensor using a 233 μm diode laser and wavelength modulation spectroscopy,” Opt. Express 26(19), 24318 (2018). https://doi.org/10.1364/OE.26.024318 Google Scholar

[16] 

Yin, X., Wu, H., Dong, L., Ma, W., Zhang, L., Yin, W., Xiao, L., Jia, S. and Tittel, F. K., “Ppb-level photoacoustic sensor system for saturation-free CO detection of SF6 decomposition by use of a 10 W fiber-amplified near-infrared diode laser,” Sensors Actuators, B Chem. 282, 567–573 (2019). https://doi.org/10.1016/j.snb.2018.11.100 Google Scholar

[17] 

Menduni, G., Sampaolo, A., Patimisco, P., Giglio, M., Dello Russo, S., Zifarelli, A., Elefante, A., Wieczorek, P. Z., Starecki, T., Passaro, V. M. N., Tittel, F. K. and Spagnolo, V., “Front-end amplifiers for tuning forks in quartz enhanced photoacoustic spectroscopy,” Appl. Sci. 10(8), 2947 (2020). https://doi.org/10.3390/app10082947 Google Scholar

[18] 

Giessibl, F. J., “Atomic resolution on Si(111)-(7×7) by noncontact atomic force microscopy with a force sensor based on a quartz tuning fork,” Appl. Phys. Lett. 76(11), 1470–1472 (2000). https://doi.org/10.1063/1.126067 Google Scholar

[19] 

Atia, W. A. and Davis, C. C., “A phase-locked shear-force microscope for distance regulation in nearfield optical microscopy,” Appl. Phys. Lett. 70(4), 405–407 (1997). https://doi.org/10.1063/1.118318 Google Scholar

[20] 

Toledo, J., Manzaneque, T., Hernando-García, J., Vázquez, J., Ababneh, A., Seidel, H., Lapuerta, M. and Sánchez-Rojas, J. L., “Application of quartz tuning forks and extensional microresonators for viscosity and density measurements in oil/fuel mixtures,” Microsyst. Technol. 20(4–5), 945–953 (2014). https://doi.org/10.1007/s00542-014-2095-x Google Scholar

[21] 

Zeisel, D., Menzi, H. and Ullrich, L., “Precise and robust quartz sensor based on tuning fork technology for (SF6)-gas density control,” Sensors Actuators, A Phys. 80(3), 233–236 (2000). https://doi.org/10.1016/S0924-4247(99)00345-3 Google Scholar

[22] 

Gaudiuso, C., Volpe, A. and Ancona, A., “One-step femtosecond laser stealth dicing of quartz,” Micromachines 11(3) (2020). https://doi.org/10.3390/mi11030327 Google Scholar

[23] 

Patimisco, P., Zhou, S., Dello Russo, S., Zifarelli, A., Sampaolo, A., Giglio, M., Rossmadl, H., Mackowiak, V., Cable, A., Iannuzzi, D. and Spagnolo, V., “Comparison between interferometric and piezoelectric readout of tuning fork vibrations in quartz-enhanced photoacoustic spectroscopy,” Nov. In-pl. Semicond. Lasers XIX 11301, A. A. Belyanin and P. M. Smowton, Eds., 62, SPIE (2020). https://doi.org/10.1117/12.2545664 Google Scholar

[24] 

Ma, Y., He, Y., Patimisco, P., Sampaolo, A., Qiao, S., Yu, X., Tittel, F. K. and Spagnolo, V., “Ultra-high sensitive trace gas detection based on light-induced thermoelastic spectroscopy and a custom quartz tuning fork,” Appl. Phys. Lett. 116(1), 011103 (2020). https://doi.org/10.1063/1.5129014 Google Scholar

[25] 

Zhang, Q., Chang, J., Cong, Z. and Wang, Z., “Application of Quartz Tuning Fork in Photodetector Based on Photothermal Effect,” IEEE Photonics Technol. Lett. 31(19), 1592–1595 (2019). https://doi.org/10.1109/LPT.68 Google Scholar

[26] 

Volpe, A., Trotta, G., Krishnan, U. and Ancona, A., “Prediction model of the depth of the femtosecond laser micro-milling of PMMA,” Opt. Laser Technol. 120 (2019). https://doi.org/10.1016/j.optlastec.2019.105713 Google Scholar

[27] 

Dello Russo, S., Zifarelli, A., Patimisco, P., Sampaolo, A., Wei, T., Wu, H., Dong, L. and Spagnolo, V., “Light-induced thermo-elastic effect in quartz tuning forks exploited as a photodetector in gas absorption spectroscopy,” Opt. Express 28(13) (2020). Google Scholar

[28] 

Patimisco, P., Sampaolo, A., Dong, L., Tittel, F. K. and Spagnolo, V., “Recent advances in quartz enhanced photoacoustic sensing,” Appl. Phys. Rev. 5(1), 011106 (2018). https://doi.org/10.1063/1.5013612 Google Scholar

[29] 

Menduni, G., Sgobba, F., Russo, S. Dello, Ranieri, A. C., Sampaolo, A., Patimisco, P., Giglio, M., Passaro, V. M. N., Csutak, S., Assante, D., Ranieri, E., Geoffrion, E. and Spagnolo, V., “Fiber-Coupled Quartz-Enhanced Photoacoustic Spectroscopy System for Methane and Ethane Monitoring in the Near-Infrared Spectral Range,” Molecules 25 (2020). https://doi.org/10.3390/molecules25235607 Google Scholar

[30] 

Zhao, F., Gao, Y., Yang, L., Yan, Y., Li, J., Ren, J., Dello Russo, S., Zifarelli, A., Patimisco, P., Wu, H. and Dong, L., “Near-infrared quartz-enhanced photoacoustic sensor for H2S detection in biogas,” Appl. Sci. 9(24) (2019). https://doi.org/10.3390/app9245347 Google Scholar

[31] 

Giglio, M., Elefante, A., Patimisco, P., Sampaolo, A., Sgobba, F., Rossmadl, H., Mackowiak, V., Wu, H., Tittel, F. K., Dong, L. and Spagnolo, V., “Quartz-enhanced photoacoustic sensor for ethylene detection implementing optimized custom tuning fork-based spectrophone,” Opt. Express 27(4), 4271–4280 (2019). https://doi.org/10.1364/OE.27.004271 Google Scholar

[32] 

Patimisco, P., Sampaolo, A., Zheng, H., Dong, L., Tittel, F. K. and Spagnolo, V., “Quartz–enhanced photoacoustic spectrophones exploiting custom tuning forks: A review,” Adv. Phys. X 2(1), 169–187 (2017). Google Scholar

[33] 

Sampaolo, A., Yu, C., Wei, T., Zifarelli, A., Giglio, M., Patimisco, P., Zhu, H., Zhu, H., He, L., Wu, H., Dong, L., Xu, G. and Spagnolo, V., “H2S quartz-enhanced photoacoustic spectroscopy sensor employing a liquid-nitrogen-cooled THz quantum cascade laser operating in pulsed mode,” Photoacoustics 21, 100219 (2021). https://doi.org/10.1016/j.pacs.2020.100219 Google Scholar

[34] 

Sampaolo, A., Menduni, G., Patimisco, P., Giglio, M., Passaro, V. M. N., Dong, L., Wu, H., Tittel, F. K. and Spagnolo, V., “Quartz-enhanced photoacoustic spectroscopy for hydrocarbon trace gas detection and petroleum exploration,” Fuel 277, 118118 (2020). https://doi.org/10.1016/j.fuel.2020.118118 Google Scholar

[35] 

Elefante, A., Giglio, M., Sampaolo, A., Menduni, G., Patimisco, P., Passaro, V. M. N., Wu, H., Rossmadl, H., Mackowiak, V., Cable, A., Tittel, F. K., Dong, L. and Spagnolo, V., “Dual-Gas Quartz-Enhanced Photoacoustic Sensor for Simultaneous Detection of Methane/Nitrous Oxide and Water Vapor,” Anal. Chem. 91(20), 12866–12873 (2019). https://doi.org/10.1021/acs.analchem.9b02709 Google Scholar

[36] 

Giglio, M., Zifarelli, A., Sampaolo, A., Menduni, G., Elefante, A., Blanchard, R., Pfluegl, C., Witinski, M. F., Vakhshoori, D., Wu, H., Passaro, V. M. N., Patimisco, P., Tittel, F. K., Dong, L. and Spagnolo, V., “Broadband detection of methane and nitrous oxide using a distributed-feedback quantum cascade laser array and quartz-enhanced photoacoustic sensing,” Photoacoustics 17, 100159 (2020). https://doi.org/10.1016/j.pacs.2019.100159 Google Scholar

[37] 

Zifarelli, A., Giglio, M., Menduni, G., Sampaolo, A., Patimisco, P., Passaro, V. M. N., Wu, H., Dong, L. and Spagnolo, V., “Partial Least-Squares Regression as a Tool to Retrieve Gas Concentrations in Mixtures Detected Using Quartz-Enhanced Photoacoustic Spectroscopy,” Anal. Chem. 92(16) (2020). https://doi.org/10.1021/acs.analchem.0c00075 Google Scholar

[38] 

Dello Russo, S., Sampaolo, A., Patimisco, P., Menduni, G., Giglio, M., Hoelzl, C., Passaro, V. M. N., Wu, H., Dong, L. and Spagnolo, V., “Quartz-enhanced photoacoustic spectroscopy exploiting low-frequency tuning forks as a tool to measure the vibrational relaxation rate in gas species,” Photoacoustics 21, 100227 (2021). https://doi.org/10.1016/j.pacs.2020.100227 Google Scholar

[39] 

Ogawa, N. and Kaneko, F., “Open end correction for a flanged circular tube using the diffusion process,” Eur. J. Phys. 34(5), 1159–1165 (2013). https://doi.org/10.1088/0143-0807/34/5/1159 Google Scholar

[41] 

Kosterev, A. A., Bakhirkin, Y. A. and Tittel, F. K., “Ultrasensitive gas detection by quartz-enhanced photoacoustic spectroscopy in the fundamental molecular absorption bands region,” Appl. Phys. B Lasers Opt. 80(1), 133–138 (2005). https://doi.org/10.1007/s00340-004-1619-y Google Scholar

[42] 

Bailey, R. T., Cruickshank, F. R., Guthrie, R., Pugh, D. and Weir, I. J. M., “Vibrational relaxation rate constants for SF6 from thermal lensing studies,” Chem. Phys. 114(3), 411–416 (1987). https://doi.org/10.1016/0301-0104(87)85054-1 Google Scholar

[43] 

Richman, D. C. and Millikan, R. C., “Vibrational energy transfer rates for the CO-CH4, CO-CF 4, and CO-SF6 systems,” J. Chem. Phys. 63(5), 2242–2244 (1975). https://doi.org/10.1063/1.431608 Google Scholar

[44] 

Hanson, R. K., “Shock-tube study of vibrational relaxation in carbon monoxide using pressure measurements,” AIAA J. 9(9), 1811–1819 (1971). https://doi.org/10.2514/3.6427 Google Scholar

[45] 

Li, S., Dong, L., Wu, H., Sampaolo, A., Patimisco, P., Spagnolo, V. and Tittel, F. K., “Ppb-Level Quartz-Enhanced Photoacoustic Detection of Carbon Monoxide Exploiting a Surface Grooved Tuning Fork,” Anal. Chem. 91(9), 5834–5840 (2019). https://doi.org/10.1021/acs.analchem.9b00182 Google Scholar

[46] 

Sun, B., Zifarelli, A., Wu, H., Dello Russo, S., Li, S., Patimisco, P., Dong, L. and Spagnolo, V., “Mid-Infrared Quartz-Enhanced Photoacoustic Sensor for ppb-Level CO Detection in a SF 6 Gas Matrix Exploiting a T-Grooved Quartz Tuning Fork,” Anal. Chem. 92(16), 13922–13929 (2020). https://doi.org/10.1021/acs.analchem.0c02772 Google Scholar

[47] 

Giglio, M., Menduni, G., Patimisco, P., Sampaolo, A., Elefante, A., Passaro, V. M. N. and Spagnolo, V., “Damping Mechanisms of Piezoelectric Quartz Tuning Forks Employed in Photoacoustic Spectroscopy for Trace Gas Sensing,” Phys. Status Solidi Appl. Mater. Sci. 216(3), 1800552 (2019). https://doi.org/10.1002/pssa.v216.3 Google Scholar

[48] 

Hosaka, H., Itao, K. and Kuroda, S., “Damping characteristics of beam-shaped micro-oscillators,” “Sensors Actuators, A Phys. 49(1–2), 87–95 (1995). https://doi.org/10.1016/0924-4247(95)01003-J Google Scholar

[49] 

Dello Russo, S., Giglio, M., Sampaolo, A., Patimisco, P., Menduni, G., Wu, H., Dong, L., Passaro, V. M. N. and Spagnolo, V., “Acoustic coupling between resonator tubes in quartz-enhanced photoacoustic spectrophones employing a large prong spacing tuning fork,” Sensors (Switzerland) 19(19) (2019). https://doi.org/10.3390/s19194109 Google Scholar

[50] 

Patimisco, P., Sampaolo, A., Bidaux, Y., Bismuto, A., Scott, M., Jiang, J., Muller, A., Faist, J., Tittel, F. K. and Spagnolo, V., “Purely wavelength- and amplitude-modulated quartz-enhanced photoacoustic spectroscopy,” Opt. Express 24(23), 25943 (2016). https://doi.org/10.1364/OE.24.025943 Google Scholar

[51] 

Giglio, M., Patimisco, P., Sampaolo, A., Scamarcio, G., Tittel, F. K. and Spagnolo, V., “Allan Deviation Plot as a Tool for Quartz-Enhanced Photoacoustic Sensors Noise Analysis,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63(4), 555–560 (2016). https://doi.org/10.1109/TUFFC.58 Google Scholar

Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Carbon monoxide

Photoacoustic spectroscopy

Geographic information systems

Quantum cascade lasers

Sensors

Molecular lasers

Molecules

Back to Top