PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
Deep neural networks (DNN) have been studied intensively in recent years, leading to many practical applications. However, there are also concerns about the security problems and vulnerabilities of DNN. Studies on adversarial network development have shown that relatively more minor perturbations can impact the DNN performance and manipulate its outcome. The impacts of adversarial perturbations have led to the development of advanced techniques for generating image-level perturbations. Once embedded in a clean image, these perturbations are not perceptible to human eyes and fool a well-trained deep learning (DL) convolutional neural network (CNN) classifier. This work introduces a new Critical-Pixel Iterative (CriPI) algorithm after a thorough study on critical pixels’ characteristics. The proposed CriPI algorithm can identify the critical pixels and generate one-pixel attack perturbations with a much higher efficiency. Compared to a one-pixel attack benchmark algorithm, the CriPI algorithm significantly reduces the time delay of the attack from seven minutes to one minute with similar success rates.
Wei Quan,Deeraj Nagothu,Nihal Poredi, andYu Chen
"CriPI: an efficient critical pixels identification algorithm for fast one-pixel attacks", Proc. SPIE 11755, Sensors and Systems for Space Applications XIV, 117550M (12 April 2021); https://doi.org/10.1117/12.2581377
ACCESS THE FULL ARTICLE
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
The alert did not successfully save. Please try again later.
Wei Quan, Deeraj Nagothu, Nihal Poredi, Yu Chen, "CriPI: an efficient critical pixels identification algorithm for fast one-pixel attacks," Proc. SPIE 11755, Sensors and Systems for Space Applications XIV, 117550M (12 April 2021); https://doi.org/10.1117/12.2581377