Paper
1 June 2021 Brain tumor segmentation based on multi-scale superpixel and kernel low-rank representation
Ting Ge, Tianming Zhan, Qinfeng Li, Shanxiang Mu
Author Affiliations +
Proceedings Volume 11848, International Conference on Signal Image Processing and Communication (ICSIPC 2021); 118480V (2021) https://doi.org/10.1117/12.2600355
Event: International Conference on Signal Image Processing and Communication (ICSIPC 2021), 2021, Chengdu, China
Abstract
A segmentation method for brain tumor MR images based on multi-scale superpixel and kernel low-rank representation (KLRR) is proposed. First, homogeneous regions of the image are generated by the multi-scale superpixel segmentation, from which the spatial features are extracted to construct multi-scale superpixel kernels. Then, KLRR is adopted to model the high-dimensional feature space of the brain tumor image, and the representation coefficients in the model are solved by introducing the constructed multi-scale superpixel kernels. Finally, the optimal classification of samples is obtained by voting strategy, so as to extract necrosis, enhanced tumor and edema, respectively. Compared with a square window, the spatial features extracted based on multi-scale superpixel regions not only conform to the structural characteristics of brain tissues and tumors so as to maintain the boundaries better, but also can give more accurate descriptions of brain tissues and tumors of different sizes. In addition, KLRR combines the linear separability of the high-dimensional feature space induced by the kernel function with the advantages of low-rank representation (LRR) for describing the global structure, which improves the accuracy of the image representation. The experimental results on the BraTS data set show that, in addition to lower requirements for the size of the training samples, the segmentation accuracy of the proposed method under different indicators is better than that of the existing methods.
© (2021) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Ting Ge, Tianming Zhan, Qinfeng Li, and Shanxiang Mu "Brain tumor segmentation based on multi-scale superpixel and kernel low-rank representation", Proc. SPIE 11848, International Conference on Signal Image Processing and Communication (ICSIPC 2021), 118480V (1 June 2021); https://doi.org/10.1117/12.2600355
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
Back to Top