Poster + Paper
9 October 2021 Resolution-enhanced phase retrieval for fringe reflection technology with structured light illumination
Author Affiliations +
Conference Poster
Abstract
Owing to its advantages of simple system structure, large dynamic range and high measurement accuracy, fringe reflection technique (FRT) is becoming a powerful tool for specular free-form surface testing in the fields of reverse engineering, defect inspection, optical manufacturing, etc. However, due to the optical transfer function (OTF) of the FRT optical system, high-frequency information on the surface of an element under test is easily lost, which affects the high-precision acquisition of three-dimensional (3D) topography especially in microscopic measurement. Although the above problem can be suppressed to some extent by using or designing high-performance optical systems, the significant increase in the complexity and cost of the measurement system is sometimes unacceptable. To overcome the afore mentioned issue, a resolution-enhanced phase retrieval algorithm based on structured illumination microscopy (SIM) for FRT with an ordinary optical system is proposed in this paper. The combination of FRT and SIM is realized by projecting conventional phase-shifting fringe patterns in multiple directions. In principle, resolution-enhanced phase retrieval with super-diffraction limitation (up to twice the pass band of OTF) can be realized through spectrum extraction, stitching and shifting. A low cost, compact, coaxial FRT setup based on open-source hardware is designed and built for experimental verification. Simulations and experimental results demonstrate the effectiveness of the proposed technique.
© (2021) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Xianmeng Shen, Maoyun Ren, Suodong Ma, Shengzhi Xu, Mingrui Liu, and LiChen Zheng "Resolution-enhanced phase retrieval for fringe reflection technology with structured light illumination", Proc. SPIE 11899, Optical Metrology and Inspection for Industrial Applications VIII, 118991D (9 October 2021); https://doi.org/10.1117/12.2603764
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Fringe analysis

Optical transfer functions

Structured light

Phase retrieval

Phase shifts

Cameras

Image processing

Back to Top