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ABSTRACT 

 
Fully automatic classification of magnetic resonance (MR) brain images into different contrasts is desirable for facilitating 
image processing pipelines, as well as for indexing and retrieving from medical image archives. In this paper, we present 
an approach based on a Siamese neural network to learn a discriminative feature representation for MR contrast 
classification. The proposed method is shown to outperform a traditional deep convolutional neural network method and 
a template matching method in identifying five different MR contrasts of input brain volumes with a variety of pathologies, 
achieving 98.59% accuracy. In addition, our approach permits one-shot learning, which allows generalization to new 
classes not seen in the training set with only one example of each new class. We demonstrate accurate one-shot learning 
performance on a sixth MR contrast that was not included in the original training.  
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1. INTRODUCTION 

 
The rapid advancement in medical imaging technology has led to a large growth of data generated for disease diagnosis 
and research trials. Proper contrast identification is often a requirement in multi-contrast image processing pipelines for 
defining parameters and associating the appropriate training data. Furthermore, retrieval of clinical cases from medical 
archives is sometimes required for instruction or interpretation. It is challenging to index the associated clinical cases 
automatically, efficiently, and accurately due to the diversity and heterogeneity of MR sequences and naming conventions. 
In addition, because the task of labeling these images is performed manually, it can be prone to errors or even removed 
due to anonymization procedures1,2. For MR images in particular, differing acquisition protocols during a scan result in 
different image contrast properties. The ability to automatically distinguish between these contrasts allows large image 
archives from multiple sites and scanners to be organized into broad categories for efficient indexing and/or processing, 
especially when image meta-data can be inconsistent between sites and scanners. 
 
Standard approaches to contrast identification use textual identifiers that are typically assigned within the DICOM 
metadata of medical images4. As an alternative, several approaches have been proposed in the literature to directly classify 
modalities or MRI contrast based only on the image content. In our previous study3, a 3D convolutional neural network 
called PhiNet was presented to classify different contrasts of MR brain images and achieved a mean 97.57% accuracy 
across 3 tasks, including T1 vs T2 vs FLAIR, pre-contrast T1 (pre-T1) vs post-contrast T1 (post-T1) and pre-contrast 
FLAIR (pre-FLAIR) vs post-contrast FLAIR (post-FLAIR). High levels of accuracy were also reported in Pizarro5. 
Chiang6, demonstrated the ability for deep learning approaches to also distinguish anatomical location as well as modality. 
 
In this paper, we propose an efficient and robust approach that can automatically classify pre-T1, post-T1, T2, pre-FLAIR 
and post-FLAIR brain images based on a deep Siamese neural network with a triplet loss. Because this approach performs 
metric learning rather than direct classification, it can generalize to new categories, unseen in the training process, with 
limited examples (one-shot learning). Siamese networks are a type of deep learning network composed of a set of two or 
more sub-networks having the same architecture with shared weights. The parallel network architecture defines an 
embedding space such that images of the same contrast cluster closely within the space, while different contrasts are distant. 
Siamese networks have been applied to various problems, including image recognition and verification, visual tracking, 
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novelty and anomaly detection, one-shot and few-shot learning7,8,9,10,11,12. The source code, as well as a trained model for 
MRI contrast classification, is available on Github: http://github.com/chouyiyu/deepMRImgContrast.  
 

2. METHOD 
2.1 Dataset 
In total, 3916 image volumes 
with various resolutions were 
obtained retrospectively and 
from public sources, 
representing 4 different sites and 
5 different scanners: GE 3T, GE 
1.5T, Philips 3T, Siemens 3T, 
and Siemens 1.5T. Five different 
contrasts of MR brain images 
including pre-T1, post-T1, T2, 
pre-FLAIR and post-FLAIR 
were acquired from not only 
healthy volunteers but also patients with traumatic brain injury, hypertension, multiple sclerosis, and Alzheimer's disease. 
Examples of these five contrasts of brain MR images and the distribution of training and testing data were shown in Figure 
1. To preprocess the images, the neck regions were first removed from each image volume using FSL robustfov. The 
images were then resampled to 2x2x2 mm3 to improve the processing speed for the neural network. Finally, each image 
was rigidly registered to MNI space using the ANTs software package13. In addition, 442 proton density (PD) weighted 
images were also available but were held out to demonstrate the one-shot learning capabilities of this approach. 
 
2.2 Siamese Neural Network Architecture 

 
A Siamese neural network with a triplet loss is a type of deep learning network structure that contains three identical 
subnetworks (encoders) used to generate feature vectors for each input and compare them4. As illustrated in Figure 2, in 
each iteration of training, the input triplet (𝐴,𝑃,𝑁) is sampled from the training set, where a baseline (anchor) input A is 
compared to a positive input P (same class as the anchor) and a negative input N (a different class from the anchor). Then 
the triplet (𝐴, 𝑃, 𝑁) is fed into the encoder network simultaneously to obtain their latent embeddings. The loss of a triplet 
(𝐴,	𝑃,	𝑁) can be formulated as14: 
 

𝐿(𝐴, 𝑃, 𝑁) = 𝑚𝑎𝑥	{0, 𝑑(𝐴, 𝑃) − 𝑑(𝐴,𝑁) +𝑚}, 
 

where 𝑑(𝑥, 𝑦) = ||𝑓(𝑥) − 𝑓(𝑦)||! is the Euclidean distance between the latent vectors of image x and image y; m is the 
hyperparameter that controls the separation between similar and dissimilar vectors in the latent embedding. The triplet loss 
function encourages large distances between anchor and negative images while minimizing the distances between anchor 
and positive images, thereby learning to differentiate similar images from non-similar ones. With the triplet loss function, 
not only are inter-class features differences enlarged, but also the intra-class feature variations are reduced, allowing the 
discriminative power of the deeply learned features to be enhanced. As we will show, these features are sufficiently 
generalized even for distinguishing new unseen classes.  
 
At inference time, the input image (query) of an unknown class is processed by the encoder to compute a feature vector 
in the latent space. This embedding is then compared with other vectors representing different image contrast clusters, 
known as the support set. This provides us with similarity scores or relative distances between the image with an unknown 
contrast and all of the existing clusters. To obtain a classification result, the image contrast with the highest similarity 
(shortest distance) is selected. 
 

3. RESULTS 
 
The proposed Siamese network was implemented on a Linux server using Keras15 with sixteen 32GB NVIDIA Tesla V100 
graphics processing units and trained for 200 epochs with a batch size of 32. To stabilize the training process, the Adam 
optimizer was used with a learning rate 0.0001. The total training time was approximately 30 minutes and run time was 

 
Figure 1: Example image of each MR contrast and the distribution of number of images for training and 
testing 
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0.1 seconds. Given a support set with 3 reference images per class, the proposed model achieved 98.59% classification 
accuracy outperforming a deep learning method (PhiNet3, 98.34%) and a template matching method (92.16%) where each 
test image is deformably registered13 to a template pre-T1, post-T1, T2, pre-FLAIR and post-FLAIR image. Pearson 
correlation coefficients were computed between each registered test image and the five templates; the template having the 
highest correlation was labeled as the contrast of the test image. Figure 3 shows the per-class sensitivity for each contrast. 
Figure 4 shows all the incorrect classifications by the proposed method, including 5 pre-FLAIR (image A to E) and 9 post-
FLAIR (image F to N) images. No pre-T1, post-T1 and T2 images were misclassified.  
 

 
 

 

 
Figure 2. Siamese neural network with triplet loss function during training. A triplet of images (Anchor, Positive and Negative) are given to three 
identical encoder networks (one input layer + 3 hidden layers with 16 filters and 3x3x3 kernels + one fully-connected output layer with 32 
dimensions). Training pulls embedded images of the same class closer together and pushes different classes further apart. 

 
Figure 3: Classification sensitivity of the proposed Siamese neural network, PhiNet and the template matching method. The values denote the 
number of incorrect predictions for each MR image contrast. 
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Figure 4: Incorrect predictions; Images A-D were pre-FLAIR but misclassified as post-FLAIR; image E was pre-FLAIR but misclassified as pre-T1. 
Images F to N were post-FLAIR but all misclassified as pre-FLAIR.  

 
 
For data visualization, all 
the embedded vectors were 
projected from 32 
dimensions into a 2-
dimensional space using 
PCA with each color 
representing a distinct class 
as shown by the legend 
(Figure 5). We can see the 
embeddings of different 
classes are mixing before 
training since the model has 
not learned to separate the 
classes out. After training, 
we can see clear clustering 
of the intra-class images and 
better separation of the inter-
class images. These plots 
indicate the model has 
learned to cluster the MR images for all 5 MR imaging contrasts even after reducing the dimensionality of the image 
features. The greatest overlap exists between the pre-FLAIR and post-FLAIR images, which is not surprising because these 
two classes are difficult to distinguish, even by an expert.  
 
The Siamese network can be used for one-shot classification by learning to discern a new class given only a single example 
without re-training. To demonstrate the discriminative potential of the learned feature mappings at one-shot classification, 
we reduced the support set for each MR contrast to 1 image and included PD images, with one of the images serving as 
the reference image. All other 441 PD images were used for evaluation. The overall classification accuracy remained high 
at 98.49%, and the classification sensitivity for PD was 100%. 
 

4. NEW OR BREAKTHROUGH WORK TO BE PRESENTED 
 

In this study, we present a deep learning approach to MR brain contrast classification based on a Siamese neural network 
demonstrating superior performance. The architecture creates a low-dimensional embedding space for MR contrasts by 
mapping images with the same class to nearby points in a low-dimensional space using a triplet loss function. The proposed 
method outperforms the traditional convolutional neural network method, and template matching method, only 
misclassifying 14 pre-contrast and post-contrast FLAIR out of 398 images that can be very difficult for a human expert to 
identify. Although the performance gain over traditional deep learning was small, an important advantage of the proposed 

 
Figure 5: Plots of the embedding vectors projected down to 2-dimensions using PCA before and after the 
training.  
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method is that its discriminatory power can be generalized without any retraining for new image contrasts. We showed 
that given sufficient initial training data to define the embedding space, only one example was required as a reference for 
classifying a completely new MR image contrast. This approach is referred to as one-shot classification, drastically 
reducing the need for labeled datasets. In addition, we expect the model is more robust to class imbalance as it can be used 
on a dataset where very few examples exist for some classes.  
 

5. CONCLUSIONS  
 
The proposed approach achieved high accuracy in the classification of MRI contrasts. Future work will further examine 
the performance in data sets with differing pathologies and acquisition protocols, and the ability to use one shot learning 
to address data sets where the algorithm performs inaccurately. We will also examine the sensitivity of the approach to the 
selection of hyperparameters, such as the dimensionality of the embedding space and the size of the support set. 
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