This paper proposes a novel combined optical-electronic simulation in an indoor environment consisting of four luminaires with tunable LEDs of different Correlated Color Temperatures (CCT). This paper investigates the ability to perform Visible Light Positioning (VLP) to identify the receiver positions in such a scenario with tunable LEDs. In this regard, the ray-tracing simulation, generating a list of rays consisting of optical power, CCT, and the corresponding wavelength of each ray, impinging on the receiver's surface, is combined with the simulation of an electronic receiver with wavelength depending sensitivity in Simulink/Simscape. This configuration allows us to evaluate the impact of tunable CCT on the electronic design, especially regarding optimizing certain parameters. In this work, we show how the number of unique values in an offline-fingerprinting map can be optimized, which is a crucial requirement for indoor positioning utilizing the fingerprinting method. With our outlined solution approach, a system-level tool is formed based on a precise and comprehensive optical-electronic simulation that allows for assessing VLP scenarios.
|