PLATO (PLAnetary Transits and Oscillations of stars) is a European Space Agency medium class mission, whose launch is foreseen for 2026. Its primary goal is to discover and characterise terrestrial exoplanets orbiting the habitable zone of their host stars. This goal will be reached with a set of 26 wide field-of-view cameras mounted on a common optical bench. Here we show some results of the first cryogenic vacuum test campaign made on the Engineering Model (EM) of one PLATO camera, performed at the Netherlands Institute for Space Research (SRON). In particular we present the search for the best focus temperature, which was done first by using a Hartmann mask, and then by maximizing the ensquared energy fractions of the point spread functions (PSFs) on the entire field of view taken at different temperature plateaus. Furthermore we present the PSF properties of the EM at the nominal focus temperature over all the field of view, focusing on the ensquared energy fractions. The Engineering Model camera was successfully integrated and validated under cryo-vacuum tests, allowing the mission to pass ESA’s Critical Milestone, and confirming the mission is on track for launch in 2026.
|