A small-footprint 4-telescope photonic beam combiner is at the heart of the Hi-5 instrument, the high-contrast VLTI visitor instrument focusing on the detection and characterization of young exoplanets in the mid-infrared L’ band. Hi-5 implements the technique of nulling interferometry to efficiently suppress the strong stellar radiation of the central source and enhance the detection of the nearby faint planetary signal. Based on the “Double Bracewell” architecture, the photonic nulling beam combiner is designed around three cascaded achromatic directional couplers with 50/50 coupling ratios. This allows the nulled signals of the first two couplers to be cross-combined with a third central combiner, which produces two conjugated asymmetric transmission maps projected onto the sky. Each individual telescope beam passes first through a side-step to suppress uncoupled stray-light. The corresponding flux is then sampled by an asymmetric Y-junction to provide a simultaneous photometric channel for the estimation of the self-calibrated nulls. We report here on the prototyping phase of the Hi-5 4-telescope photonic beam combiner that is manufactured by ultrafast laser inscription in a Gallium-Lanthanum-Sulphide (GLS) glass substrate, which exhibits high transparency in the L’ band of interest. Using our 2-beam spectro-interferometric lab bench, we measure the throughput of the beam combiners, the chromatic and broadband coupling ratios in the 3.6-3.9 μm range for the couplers and the Y-junctions, as well as the broadband interferometric properties of these 4-telescope mid-infrared photonic beam combiners.
|