The geometric parameters of sharpening the rake surface are very important for the efficient use of the drill. Therefore, it is important to know the correct sharpening angle of the drill in the radial direction. This is especially important at the stage of regrinding the drill, due to the incorrect installation of the drill into the fixture. In this paper, a new image processing algorithm is proposed that allows you to set indicators and factors that determine the correct choice of the angular position of the drill after regrinding. This algorithm can be of great industrial use due to the simplicity of implementation and minimization of the necessary equipment for setting up the measuring station. The presented model has an important application value and differs from the existing ones in that it can be applied for regrinding of drills with curvilinear cutting edges. This advantage is achieved by using a simpler construction of the drill’s flank surfaces. The proposed design ensures a rational distribution of the clearance angle value along the cutting part regardless of the original shape of the flank surface before the regrinding. Taking into account the limitations of the image processing algorithm and the theoretical model of the cutting part of a tri-flute drill, a rational ratio of the rake and clearance angles obtained by simulating the edge movement in cutting process. This approach allows a radical revision of the traditional recommendations for regrinding process of tri-flute drills. This is becomes possible to solve problems associated with regrinding drills with involute and multi-level flat flank surface. However, the validity of our work still needs to be carefully checked.
|