PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
This PDF file contains the front matter associated with SPIE Proceedings Volume 12313, including the Title Page, Copyright information, Table of Contents, and Conference Committee Page.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Flat optics have become capable of achieving unprecedented functionalities through electromagnetic (EM) wave manipulation by employing the metasurfaces. The most crucial part in the design of metasurface is the selection the constitutive component i.e. the meta-atom’s material and structure so that it exhibits the precise operation as per the desired application. The unit-cell design calls for an iterative loop of simulations in order to explore the EM responses for intended operation. In this work, we have studied the absorption response of refractory materials under visible light radiations for their utilization in energy harvesting applications. The absorption response estimation using machine-learning techniques for the materials having very high melting-points, mechanical stabilities and inertness to the atmosphere has been carried out to investigate their performance in the broadband range. The presented regression models incorporate hybrid data format i.e. they simultaneously contend with 3-D and 1-D properties of various shapes of nano-resonators. The images’ feature extraction is carried out by employing Singular Value Decomposition. The trained models are potent enough to bypass the repetitive sequence of optimization involved in conventional EM solvers. Additionally, the models are capable of predicting the optimum shape along with structural dimensions of unit-cell. For forward model, the MSEs for training and testing are 1.302×10-2 and 3.269×10-2 while R2 scores are 0.9804 and 0.8764, respectively. The approach applied is so robust that, irrespective of complexity of unit-cell structure is, it serves the purpose of predicting the distinct structure with highest performance while bypassing the time- and computationally-intensive EM simulations.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The polarization emission has many applications in the field of display, and the key to perovskite polarization emission is large-scale orientation. In this paper, we reported the electric field oriented perovskite nanowires method. The perovskite nanowires with average length of 60nm, radius of 5nm and central wavelength of 509nm were synthesized. Then aligned by alternating electric field, and the polarization was finally measured at 0.33, which was three times better than without the alternating electric field.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.