PLATO (Planetary Transits and Oscillation of Starts) will be used for finding the hugest amount of exoplanets ever found and to characterize them together to the associated star activity evaluation through its astroseismology. For such a purpose, 26 telescopes will be mounted on the same platform: 24 of them, called ‘normal’ and composed of four full-frame CCDs and the last 2, known as ‘fast’ composed of four frame-transfer CCDs. In both cases, CCDs will be installed on their respective focal plane assemblies (FPAs). For completing the detection chain, they are using their front end electronics (FEE), being the optics and opto-mechanics of the telescope optical unit (TOU) the last element of the PLATO CAMs. As a part of the payload development and assembly and integration and test, the PLATO CAMs are required to be calibrated and tested on simulated working conditions. INTA is one of the European institutions (together to IAS and SRON, in France and Netherlands, respectively), in which such telescopes testing and calibration is carried out. As a part of the product assurance activities, a protocol for reaching safe conditions on the telescopes during TVAC testing under any unexpected and dangerous event happed was prepared. In this paper, we are describing the need of the protocol activation for answering to one of the worst events that could be present during a TVAC testing campaign: an unexpected power outage making the vacuum pumps critically fail. The room conditions recovering in a safe way is reported on.
|