Future space observatories dedicated to direct imaging and spectroscopy of extra-solar planets will require ultra-low-noise detectors that are sensitive over a broad range of wavelengths. Silicon charge-coupled devices (CCDs), such as EMCCDs, Skipper CCDs, and Multi-Amplifier Sensing CCDs, have demonstrated the ability to detect and measure single photons from ultra-violet to near-infrared wavelengths, making them candidate technologies for this application. In this context, we study a relatively unexplored source of low-energy background coming from Cherenkov radiation produced by energetic charged particles traversing a silicon detector. In the intense radiation environment of space, energetic cosmic rays produce high-energy tracks and more extended halos of low-energy Cherenkov photons, which are detectable with ultra-low-noise detectors. We present a model of this effect that is calibrated to laboratory data, and we use this model to characterize the residual background rate for ultra-low noise silicon detectors in space. We find that the rate of cosmic-ray-induced Cherenkov photon production is comparable to other detector and astrophysical backgrounds that have previously been considered.
|