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ABSTRACT 

Recently, the vision transformer (ViT) model of deep learning has achieved surprising performance in the field of 

computer vision and has been widely used in IoT edge devices. However, the training of ViT models requires a large 

amount of data and computing resources, which is a challenge for resource-constrained edge IoT devices. To solve the 

above problems, this paper proposed a lightweight ViT method based on transfer learning. The primary concept of this 

method is to train large-scale ViT models in the cloud (CloudViT) and deploying small-scale ViT models at the edge 

(EdgeViT). Firstly, through the method of transfer learning, some underlying parameters of CloudViT were utilized to 

construct EdgeViT. The purpose is to enable EdgeViT to learn from CloudViT, acquiring knowledge and improving its 

performance. Secondly, adding a randomly initialized LayerNorm layer before the MLPHead during the training process 

of EdgeViT, it can improve further model performance. Finally, Experiment results demonstrated that EdgeViT could 

achieve 91.3% of CloudViT’s performance with only half the parameters and floating-point operations (FLOPs). 

Moreover, finetuning EdgeViT with a 60% reduction in training time still allows it to achieve 81.3% of CloudViT’s 

performance. Relevant conclusions can provide technical support for the proposed method.  
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1. INTRODUCTION 

In recent years, Vision Transformer (ViT) and its variants1,2 have demonstrated remarkable performance surpassing 

convolutional neural networks (CNNs) in various computer vision tasks. The application of ViT models on the Internet 

of Things (IoT) to provide high-quality services to end-users has garnered significant attention from researchers. 

However, ViT models entail a large number of parameters and Floating Point Operations per Second (FLOPs), making 

the training of high-performance ViT models demanding in terms of data and computational resources3. Achieving 

training and deployment of ViT models on resource-constrained edge devices is thus exceedingly challenging. 

Consequently, the integration of ViT models into edge devices remains a pressing issue to address. 

Various neural network compression techniques and model optimization methods, combined with cloud computing for 

assisted model training, have emerged as primary approaches to address this issue4. Researchers have proposed various 

cloud-edge collaboration frameworks and distributed deep neural network architectures to enhance the performance and 

efficiency of deep learning models on edge devices. Li et al.5 introduced the FitCNN framework, which utilizes cloud 

assistance to gradually collect incremental training data on mobile devices and retrain the model to improve its 

performance. Ding et al.6 proposed a cloud-edge collaboration framework for cognitive services, where the cloud is 

utilized for training deep neural networks, and the edge is used for training shallow neural networks. They leverage the 

lower layers of the deep model to assist in training the shallow model, thereby enhancing the performance of edge-side 

neural networks. Hsu et al.7 proposed a cloud-edge intelligent IoT architecture based on transfer learning techniques to 

accelerate the deployment of neural network models. Furthermore, significant contributions have been made in the field 

of model lightweighting and optimization. Zheng et al.8 introduced a versatile ViT acceleration and pruning framework, 

SAVIT, which reduces computational costs and accelerates pruning without compromising model performance. Li et al.9 

proposed a fully differentiable quantization method for ViT, Q-ViT, pushing the quantization limit of ViT to 3 bits. Chen 

et al.10 presented an early knowledge distillation framework, DearKD, achieving outstanding performance on ImageNet. 

Chen et al.11 combined MobileNet with ViT, proposing a lightweight model called Mobile-Former. 
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Despite the effectiveness of existing methods for lightweighting and optimizing ViT models, when it comes to large-

scale deployment in IoT edge environments, the high computational costs and complexity hinder seamless integration 

with cloud computing. To address this issue, this paper proposes a transfer learning-based approach for ViT model 

lightweighting. This method utilizes the low-level features of ViT models for transfer learning training, resulting in 

smaller-scale ViT models that are more suitable for deployment on edge devices. In comparison to the above methods, 

this approach is more straightforward, does not alter the ViT network structure, and thus can be more easily combined 

with cloud-assisted techniques. Moreover, it provides a promising starting point and optimization foundation for future 

research on ViT model lightweighting.  

2. METHOD 

2.1 Cloud-assisted training framework 

The framework comprises three key components: the cloud, the edge, and IoT devices (Figure 1). The cloud, which 

includes servers from platforms such as Google Cloud and Alibaba Cloud, is known for its powerful computing and 

storage capabilities. The edge comprises devices like edge gateways and servers, providing fast response services to 

users. IoT devices comprises various sensors and personal devices like network cameras and personal computers, 

typically transmitting data to either the cloud or the edge for task processing. Adapting the scale of EdgeViT to match 

the computational and storage capabilities of edge devices. 

 

Figure 1. Cloud-assisted framework and its workflow. 

2.2 Details 

ViTBase contains around 86 million parameters1, with the majority located in its Encoder (approximately 85.2 million). 

The Encoder comprises 12 identical EncoderBlocks. According to Jason et al.’s research12, neural network models tend 

to learn more general features in layers closer to the input. This characteristic allows us to utilize the low-level features 

of the ViT model for transfer learning training. By removing some EncoderBlocks from the end of the ViT model, we 

can shrink its size, reducing both the number of parameters and FLOPs. Leveraging this capability, CloudViT is trained 

in the cloud, and through transfer learning techniques, a portion of its parameters is shared with EdgeViT to enhance the 

performance and training efficiency of EdgeViT. As data at the cloud and edge may differ, CloudViT may not directly 

adapt to specific edge tasks. This aligns with the core principle of transfer learning, which aims to utilize knowledge and 

experience gained from one task to improve performance on new tasks. 

CloudViT developed in the cloud serves as the starting point for EdgeViT at the edge. Using the cloud data domain as 

the source domain DCloud and the edge task domain as the target domain DEdge. 
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In traditional transfer learning, the standard practice involves transferring all parameters of the source domain model, 

excluding the classification head, to the target domain. In the target domain, the structure and parameters of the 

classification head are task-specific and require retraining and adjustment to meet the task requirements of the target domain. 
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In the ViT model for the target task, the parameters of the Input Embedding layer are denoted as WIE, the parameters of 

the Encoder are denoted as WE, the parameters of the LayerNorm are denoted as WL, and the classification head is 

denoted as WH. Additionally, this study found that the LayerNorm layer, despite adaptation on the original task’s large-

scale dataset, may have adverse effects when transferred to the target task due to mismatched data distributions. 

Therefore, this paper considers LayerNorm as part of the classification head, initializing it randomly and retraining it on 

the edge task during the training process of EdgeViT. 

Consequently, on the edge target task, given the target training data 
N

iii yx 1},{ =
, fine-tuning is performed on the 

classification head and LayerNorm, optimizing the following loss function: 
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The algorithm proposed in this paper for ViT cloud-assisted edge fine-tuning training based on transfer learning follows 

the steps below: 

Algorithm 1 Workflow 

Input: CloudViT with paramters: 
EIE WW , ; 

EdgeD  Trainning dataset SM

iii yx 1},{ =
  

Output: EdgeViT 

1 Cloud send CloudViT’s Parameters 
IEW  and part of 

EW (
poEW ) to Edge 

2 Edge server use 
IEW , 

EW , and random Initialization Layernorm, MLPHead form an EdgeViT 

3 SM

iii yx 1},{ =  
optimal loss function )( HLWf +

  

4 Return EdgeViT with 
HLpoEIE WWW +   

3. EXPERIMENTS 

3.1 Experimental setup 

The pre-trained model ViT-Base-Patch16-224 (ViTBase)1 is utilized as CloudViT. This model is pre-trained on the 

imagenet-21 k dataset. The experimental environment includes Python 3.7, TensorFlow 2.5, and CUDA 11.6. The 

experimental hardware consists of an NVIDIA GTX1650 GPU with 896 CUDA Cores, a base clock speed of 1395 MHz, 

and 4 GB GDDR5 128-bit VRAM. The model employs the SGD optimizer with momentum, an initial learning rate of 

1×10-3, a batch size of 4, and 10 epochs. The MLPHead is configured as one Dense layer. 

Table 1. Dataset. 

 Training set Test set Laber Size 

Cat & dog 5913 1477 37 224×224×3 

Nature scene 13630 3404 6 224×224×3 

Animal 4320 1080 90 224×224×3 

The experiments utilized three datasets (Table 1): the Cat & dog dataset13, comprising approximately 7.3 K images 

covering 37 different breeds of cats and dogs; the Natural Scene dataset initially released by Intel for an image 

classification challenge, contains around 17 K images distributed across six categories: buildings, forests, glaciers, 

mountains, seas and streets14; and the Animal dataset, which includes 5.4 K animal images encompassing 90 different 

species15. ViTBase achieved Top-1 accuracies of 93.9%, 93.6%, and 91.6% on these three datasets, respectively. 
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3.2 LayerNorm 

To explore the impact of different transfer training methods on EdgeViT’s LayerNorm performance, we devised the 

following experiments. We categorized the training approaches for transfer models into four distinct types (Table 2). 

The ViT-f6 refers to loading the weights of the Input Embedding section and the first 6 EncoderBlocks from the pre-

trained ViTBase model into this model and freezing them, which is then used as EdgeViT. After ten epochs, the 

experimental results are shown in Table 2. 

Table 2. The top-1 accuracy of models on each dataset (%). 

Model Training methods Cat & dog Nature scene Animal 

ViT-f6-1 Transfer LayerNorm with fine-tuning 49.9 89.2 39.4 

ViT-f6-2 Transfer LayerNorm, non-fine-tuning 54.7 90.1 39.8 

ViT-f6-3 No Transfer of LayerNorm, no fine-tuning 71.6 92.2 58.5 

ViT-f6-4 No Transfer of LayerNorm with fine-tuning 73.6 92.6 61.0 

Based on the data in Table 2, training methods three and four outperform methods one and two by approximately 20%, 

19%, and 2.6% in average accuracy, respectively. This indicates that not transferring the LayerNorm layer and fine-

tuning it can achieve the optimal model performance. Additionally, the LayerNorm layer only consists of 1.5 k 

parameters, so training this part hardly incurs any additional computational cost. 

3.3 Performance of EdgeViT 

This experiment aims to compare the top-1 accuracy of EdgeViT with randomly initialized ViT on the three datasets 

mentioned above. The performance of the models trained using the three methods from Table 3 is compared. After 

training for 10 epochs, the experimental results are shown in Table 4. 

Table 3. Explanation of different training methods. 

Model Initialization and training methods 

ViT-n* Randomly initialized ViT model with * EncoderBlocks trained from scratch. 

ViT-f* EdgeViT, initialized with CloudViT assistance, undergoes fine-tuning training 

ViT-f*-T EdgeViT initialized with CloudViT assistance, trained from scratch. 

Table 4. Model accuracy on the mentioned datasets. (%) 

 Cat & dog Natural scenes Animal 

ViT-n*(4/6/8) 27.7/24.1/24.7 78.5/80.3/78.6 19.8/19.2/19.5 

ViT-f*(4/6/8) 62.1/73.6/79.1 90.5/92.4/93.4 45.0/61.0/68.8 

ViT-f*(4/6/8)-T 81.4/88.0/91.9 92.4/93.9/94.5 59.4/73.1/81.9 

Note: * denotes 4/6/8, representing ViT models with 4, 6, or 8 Encoder blocks 

respectively. Accuracy of each model is listed from left to right. 

Table 4 displays the Top-1 accuracy comparison of various compact ViT models after fine-tuning and retraining for 10 

epochs on the three datasets. For ViT-f4, fine-tuning achieves an average accuracy of 70.8% of ViTBase; if fully trained, 

it reaches 83.5% of ViTBase’s accuracy. ViT-f6 attains 81.3% of ViTBase in fine-tuning training; if fully trained, it 

reaches 91.3% of ViTBase’s accuracy. When fine-tuning ViT-f8, it achieves 86.4% of ViTBase’s accuracy; if fully 

trained, it reaches 96.1% of ViTBase’s accuracy. It is evident that, whether through fine-tuning or retraining, EdgeViT 

utilizing shared parameters from CloudViT demonstrates performance closer to CloudViT and significantly outperforms 

traditional ViT models. Additionally, during fine-tuning training, compared to training models of the same scale from 

scratch, each epoch can save approximately 60% of the training time (Figure 2). 
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Table 5 shows that ViT-f4 has only one-third of the parameters and FLOPs of ViTBase, ViT-f6 has half, and ViT-f8 has 

two-thirds. The EdgeViT model has a significantly smaller scale. Combining the experimental data above, it can be 

clearly observed that EdgeViT achieves higher performance in a shorter training time. 

Table 5. Model scales. 

 ViTBase ViT-f4 ViT-f6 ViT-f8 

FLOPs 16.86 G 5.7 G 8.49 G 11.28 G 

#Params 86 M 29 M 43 M 57 M 

 

Figure 2. Training duration of the model on the dataset. 

Taking ViT-f6 as an example, this model achieves a comprehensive performance of 90% compared to ViTBase while 

having only half the parameter count and FLOPs. Additionally, it reaches this performance with fewer training epochs 

(Figure 3). When fine-tuning is applied to EdgeViT, its comprehensive performance reaches 80% of ViTBase. 

Furthermore, fine-tuning saves approximately 60% of the training time per epoch compared to training from scratch. 

 

Figure 3. Accuracy of ViT-f6 on three datasets.  
Note: With the change of epochs. 

The experiments revealed that by removing some of the bottom EncoderBlocks of the ViT model, there is a significant 

reduction in the number of parameters and FLOPs. This reduction far exceeds the decrease in model performance. 

Therefore, we can flexibly adjust the scale of EdgeViT according to specific task requirements, thereby better adapting 

to the computational and storage capabilities at the edge. 

4. CONCLUSION 

The paper introduces a ViT model lightweighting method that combines transfer learning techniques. This method 

utilizes the bottom-layer parameters of CloudViT to initialize EdgeViT. Additionally, it involves randomly initializing 

the LayerNorm layer before MLPHead and fine-tuning it together with the classification head. Experimental results 

demonstrate that the EdgeViT constructed using this method exhibits higher training efficiency, facilitating deployment 

in cloud-assisted edge frameworks. In the future, we will integrate additional optimization techniques to enhance 

EdgeViT and evaluate its performance on tasks such as object detection and image segmentation. 
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