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ABSTRACT 

Multispectral remote sensing satellite images exhibit characteristics such as small objects, complex scenes, significant 

changes in object scale, and difficulty in distinguishing regions with similar spectral features. As the spectral reflection 

characteristics of water bodies vary with factors like season and geographical location, different background information 

affects the accuracy of the water body extraction. Therefore, extraction of broken and discontinuous water bodies is still 

challenging. Recent studies have shown that using multimodal information can represent the features of targets from 

different perspectives, thereby improving the robustness of semantic segmentation. To address these issues, this paper 

utilizes the spectral index’s ability to recognize water to drive the extraction accuracy of neural networks for water 

recognition. A multimodal remote sensing semantic segmentation network (MRSSNET) is proposed, which integrates 

water index method to fuse images with Digital Surface Model (DSM) images. We use deep learning-based segmentation 

models to perform water segmentation, such as Fully Convolutional Networks (FCN), U-Net, Segformer, SegNext and 

Deeplabv3+, representatively. Experimental results demonstrate that MRSSNET outperforms the other four algorithms in 

identifying water bodies within complex and discontinuous geographical environments. 
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1. INTRODUCTION 

Surface water is not only an important part of water resource, but also one of the important resources necessary for 

people’s lives. Rapid and accurate acquisition of spatial distribution information of water bodies is crucial to the 

socio-economic and sustainable development of water resource. With remote sensing technology’s rapid advancement, 

extracting information about water bodies has emerged as a significant research area1. With the continuously 

development of remote sensing technology2,3 the use of satellite remote sensing images to extract water body area, 

geometric shape, water body ecological environment and other information has been applied in water resources survey, 

environmental protection and water resource macro-monitoring and other fields4. In the past few decades, surface water 

extraction methods based on remote sensing images have been mainly divided into three categories: threshold methods 

based on single-band images, identification methods based on spectral indexes, and image classification methods. As the 

spectral reflection characteristics of water bodies vary with factors like season, geographical location, and depth, 

non-water objects may exhibit similar spectral reflections to water body in certain bands. Therefore, the threshold 

method of single-band images to obtain the spatial distribution of surface water has certain limitations. The spectral 

index-driven water extraction method is based on the different spectral reflection characteristics of water in different 

bands and combines multiple bands to highlight the water body information in remote sensing images. For example, the 

Normalized Difference Water Index (NDWI) proposed by McFeeters5 is based on the prominent reflection of water in 

the green band and the strong absorption in the infrared band, which highlights the water body information in the image 

and suppresses vegetation and soil. information. Xu6 aimed at the problem that NDWI cannot suppresses the shadows of 

tall buildings very well. By combining the green band and the mid-infrared band, the water area of the entire image can 

be displayed in a balanced manner and the shadows of tall buildings can be suppressed to a certain extent. Feyisa et al.7 

extracted water bodies by constructing an automated water extraction index (AWEIsh) model, and selected water bodies 

under various backgrounds (such as black soil, shadows, etc.) around the world to conduct a large number of water 
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extraction experiments. The results shows that the index can effectively amplify the difference between water bodies and 

non-water bodies, thereby achieving accurate extraction of water body information; the spectral index method is simple 

and effective, and is still an effective way to extract large-scale water bodies. 

In recent years, the development of artificial intelligence technology has prompted some scholars to study the extraction 

of surface water bodies based on machine learning. For example, Abid et al.8 used an unsupervised curriculum learning 

method based on convolutional neural networks to identify water bodies, which overcomes the challenges faced by 

remote sensing images. Chen et al.9 used convolutional neural networks to extract water bodies. By comparing with 

traditional methods such as the normalized difference water index (NDWI), they proved the effectiveness of deep 

learning methods in water body extraction. Zhang et al.10 proposed the MF-Segformer network based on multi-scale 

fusion technology, which has good performance in Weihe River Basin extraction. 

Semantic segmentation for single modality has achieved outstanding performance in the CV Community11-14. However, 

there is limited research on multimodal fusion tasks. Compared to single-mode remote sensing data, limited by 

resolution and spectrum, multimodal data can display the features of targets from different perspectives15,16. Therefore, 

utilizing complementary features of different modal data can better represent ground features and improve segmentation 

performance. Previous research on remote sensing image segmentation mostly focused on using visible light band 

combinations for land feature segmentation, while neglecting the rich band combinations of remote sensing images. 

Therefore, in terms of data, this article uses three spectral index methods to fuse images as RGB image inputs, and 

proposes an FEM module to fuse the features of spectral index images and DSM images. Finally, improvements are 

made in the loss function. 

2. METHODS 

The network structure of the proposed MRSSNET is presented in Figure 1. The network adopts a classic codec structure. 

The encoder is composed of a dual-branch ResNet50. At each layer, the optical branch and DSM branch features are 

fused in the FEM module. Finally, the high-level features are combined and sent to the DenseASPP and Concurrent 

Spatial and Channel Squeeze and Channel Excitation (scSE) modules17.  

 

Figure 1. The MRSSNET network structure. 

Since there are differences in spectral and texture information between water and its surroundings, it is necessary to 

make full use of these differences to accurately identify the water. Using RGB images and DSM images as dual inputs to 

the network, features are first extracted through ResNet50, and then the FEM module is used to fuse the features 

obtained at each step. The fused feature map is used as one of the inputs to the decoder. The cross-scale feature fusion 

module FEM can effectively prevent the problem of similar adjacent features and ensure the differentiation of fused 

features. It reduces information dispersion and interacts, and integrates global features to obtain more comprehensive and 

rich water body features. The DenseASPP enhances feature reuse and information flow through dense connections, and 

detailed features are fused layer by layer throughout the network, allowing for better fusion of multi-scale features. This 

enables the acquisition of richer contextual information, which helps the network improve segmentation performance. 

The SCSE module excels at capturing critical features of WBs in both the channel and spatial dimensions, effectively 

reducing information diffusion. By enhancing the ability to capture contextual information, it enables the acquisition of 

more comprehensive and detailed WB features. This module effectively addresses the challenge of capturing fine details 

that existing models often struggle with. In terms of the loss function, the auxiliary head is used to calculate the auxiliary 

loss value, which is conducive to the optimization learning of the overall model18, thereby reducing the occurrence of 

missed extractions or discontinuous extractions. 
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Figure 2 shows the structure diagram of the FEM module. FEM can fuse these features, use semantic and detailed 

information to eliminate the interference of non-water features around the water body, and enhance the ability to extract 

edge information from WB. In addition, the FEM module can effectively prevent the problem of similar adjacent features 

and ensure the differentiation of fused features. The low-level feature maps )(
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are the feature output maps of Stage4 and Stage3 in the backbone respectively. The FEM module automatically resizes 

the high-level feature maps in the backbone to match the low-level feature map through upsampling, and performs 

feature fusion using cross-layer methods to ensure diversity in the fused features. 

 

Figure 2. The FEM module structure diagram. 

The loss function of MRSSNET is Lossseg, which consists of focal loss and dice loss with an equal weight ratio of 1:1. 

The formula is as follows: 

DiceFocalseg LossLossLoss +=
                                  

(1)
 

where FocalLoss  is the focal loss value and DiceLoss  is the dice coefficient loss value. During the task of extracting 

water bodies, only a small area in a large number of sample images contains water bodies. When segmenting small 

targets, Dice Loss can alleviate the negative effects caused by the imbalance between the foreground and background in 

the samples. Focal Loss is an improvement based on cross-entropy loss. When there is an imbalance between positive 

and negative samples in the dataset, Focal Loss helps improve model performance. Therefore, in this task, Focal Loss 

and Dice Loss are used together to make full use of the advantages of both. Focal Loss can handle category imbalance, 

while Dice Loss can ensure accurate boundary segmentation. 

SCSE is composed of Spatial Squeeze and Channel Excitation (cSE) and Channel Squeeze and Spatial Excitation (sSE). 

sSE compresses the feature map in the channel dimension through convolution, aggregates the channel information onto 

the spatial representation, and then generates the weight coefficient of each position through the Sigmoid activation 

function. Finally, the weight coefficient is compared with the original feature map. Position-by-position multiplication 

implements Spatially Recalibrate, cSE aggregates spatial information into the global representation of each channel 

through global average pooling, then obtains the importance of the channel through two fully connected layers and a 

Sigmoid activation function, and finally uses the weight coefficient to compare it with the original feature map channel 

by channel, multiplying to achieve channel-wise recalibration. 

3. EXPERIMENTS 

3.1 Dataset and experimental details 

Since there are differences in spectral and texture information between water and its surroundings, it is necessary to 

make full use of this difference to accurately identify the water. In terms of data sources, True color images are 

composed of red, green and blue bands, which are 4, 3, and 2 bands respectively (RGB 432). True color images are no 
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longer used as training data, but NDWI, MNDWI, and AWEI are used as R, G and B band input to enhance the ability to 

extract water body edge information. 

In this study, we selected the 2016 Landsat 8 OLI 30 m resolution image of the Weihe River Basin for dataset production. 

The corresponding ground truth is obtained using visual interpretation. The DSM data uses the ALOS World 3D-30 m 

dataset, which is a global DSM dataset with a resolution of 30 m. Next, we used the characteristics of different spectra in 

multispectral data and use a spectral calculator to calculate three spectral index images. For example, NDWI uses the 

green band and near-mid-infrared band, MNDWI uses the green band and mid-infrared band, and AWEI uses blue, green, 

near-mid-infrared, mid-infrared, and thermal infrared bands. We generated the corresponding NDWI, MNDWI, and 

AWEI images and merge them. We crop the merged image and corresponding label into a 256×256 small image, 

obtaining a total of 16610 pairs of sample data. We divided all data into training dataset, verification dataset and test 

dataset according to the ratio of 6:2:2, that is randomly selected 9966 pairs of samples as the training dataset, 3322 pairs 

of samples as the verification dataset, and the remaining 3322 pairs of samples as a test dataset. In order to reduce the 

overfitting of the model and improve the accuracy of the model, we used a series of methods to increase the training 

sample set, including flipping, rotating, cropping, deforming, and scaling. Finally, we expanded the training dataset to 

24,000 pairs of samples. The NDWI, MNDWI, AWEI formula is as follows: 

)/()(NDWI NIRGreenNIRGreen +−=
                                

(2) 

)/()(MNDWI MIRGreenMIRGreen +−=
                               

(3) 

SWIRMIRNIRGreenBLUE −+−+= 25.0)(5.15.2AWEI
                      

(4) 

3.2 Results and discussion 

In order to verify the performance of our proposed algorithm, we selected Fully Convolutional Networks (FCN), U-Net, 

Segformer, SegNext and DeeplabV3+ for comparison. Table 1 shows the F1_score, Precision, Recall and mIoU of 

different algorithms on the test dataset. 

Table 1. Comparison of water body extraction performance of different models on the visible light RGB 432 dataset. 

Model OURS DeepLabV3+ SegNext Segformer U-Net FCN 

mIoU (%) 85.27 83.41 82.67 81.91 81.52 80.34 

Precision (%) 83.37 82.13 81.32 77.35 81.83 79.25 

Recall (%) 82.29 78.85 73.61 82.37 79.04 76.36 

F1_score (%) 82.36 80.22 75.84 80.04 81.22 77.89 

In order to better verify the extraction effect of the model on water bodies, we conducted a qualitative analysis of the 

results of all algorithms. As shown in Figure 3, each column represents a different scenario, and we selected a total of 5 

different scenarios. The first row is a pseudo-color composite image of a real scene, the second row is a labeled image of 

each scene, and the third to sixth rows are the prediction results of the comparison algorithm. 

 

Figure 3. The SCSE module structure diagram. 

As shown in Table 1, show the performance of all models on the visible light dataset. we found that MRSSNET has the 

highest F1_Score, Precision and mIoU values (82.36%, 83.37%, 85.27%). Segformer has the highest Recall. 
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As shown in Table 2, show the performance of all models on the Spectral Index fusion Images dataset. we found the 

spectral index fusion image dataset has significantly improved performance, mainly due to its ability to recognize water, 

which improves the accuracy of neural networks in water recognition. MRSSNET achieved the highest F1_score, 

Precision, recall and mIoU values (85.86%, 86.51%, 85.22%, 88.08%).  

Table 2. Comparison of water body extraction performance of different models on spectral index fusion images dataset. 

Model OURS DeepLabV3+ SegNext Segformer U-Net FCN 

mIoU (%) 88.08 86.02 83.31 84.93 84.78 83.57 

Precision (%) 86.51 85.83 82.69 79.06 83.27 81.12 

Recall (%) 85.22 80.41 75.75 84.03 80.09 77.87 

F1_score (%) 85.86 83.02 77.06 81.46 82.83 79.46 

As shown in Figure 4, the green solid line is a key focus area. The solid yellow line represents water bodies that have not 

been extracted. The solid red line indicates that the extracted water body is not continuous and there is a phenomenon of 

fracture. It can be seen from the results that each model exhibits varying degrees of incompleteness. There are fewer 

incomplete phenomena in MRSSNET. For small water bodies, the shadow of the mountain will become the main factor 

affecting the extraction accuracy. SETR and Segformer will smooth out sharp water body boundaries, thereby losing part 

of the water body information. Each algorithm performs well in the reservoir extraction. 

 

Figure 4. The extraction results comparison of five kinds of water bodies. (a, e): The scenario containing small water bodies; (b): The 

scenario containing the reservoir; (c, d): The scenario containing small and continuous water bodies. 

4. CONCLUSIONS 

This study introduces a multimodal fusion semantic segmentation network MRSSNET, that uses spectral index fusion 

images and DSM images as inputs to the network on the dataset. Unlike traditional methods that input true color images, 

the network utilizes the spectral index’s ability to recognize water and drives the accuracy of the neural network in 

extracting water bodies. DSM images have excellent surface feature information, which is used to assist networks in 

learning structured information between water bodies and non-water bodies. It can effectively extract various types of 

water bodies in complex scenes. It makes full use of the backbone network to extract water body semantic information, 

uses the FEM module to enhance the water body edge segmentation effect, uses the DenseASPP module to enhance the 
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small water body extraction effect, and finally uses the auxiliary head to optimize the model learning process. This study 

utilized Landsat 8 OLI images for experimentation and compared the results with other mainstream segmentation 

algorithms. The results show that MRSSNET has better performance. 
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