We assessed the ability of the human hepatocarcinoma cell line HepG2 to synthesize PpIX in vitro from exogenous ALA and analyzed ALA-induced toxicity and phototoxicity on this cell line. ALA induced a slight dose-dependent dark toxicity, with 79 and 66% cell survival respectively for ALA 50 and 100 mg/ml after 3-h incubation. Whereas the same treatment followed by laser irradiation (l equals 632 nm, 25 J/sq cm) induced dose-dependent phototoxicity, with 54 and 19% cell survival 24 h after PDT. Whatever the incubation time with ALA, a 3-h delay before light exposure was found optimal to reach a maximal phototoxicity. Photoproducts induced by porphyrin light irradiation absorbed light in the red spectral region at longer wavelengths than did the original porphyrins. The possible enhancement of PDT effects after ALA HepG2 cell incubation was investigated by irradiating cells successively with red light (l equals 632 nm) and light (l equals 650 nm). Total fluence was kept constant at 25 J/sq cm. Phototoxicity was lower when cells were irradiated for increased periods of l equals 650 nm light than with l equals 632 nm light alone. Any photoproducts involved had either a short life or were poorly photoreactive. HepG2 cells, synthesizing enzymes and precursors of endogenous porphyrin synthesis, represent a good in vitro model for experiments using ALA-PpIX-PDT.
|