Paper
16 June 1995 Three-dimensional object surface matching
Author Affiliations +
Abstract
In this paper, we describe a computationally efficient 3D object surface matching algorithm. In the proposed method, object and model surfaces are scaled to be in a unit cube in the 3D space. They are then sliced along the magnitude axis and the resultant object and model surface cross sections are represented in binary image format. The cross sections' centroids of an unknown object and the models of different shapes are computed in their respective binary images. The resultant cross-sections are translated to the origin of the spatial plane using the centroids. Major and minor axes of the plane cross sections are aligned with the coordinate axes of the spatial plane. Matching of the aligned cross sections is done in the direction of the gradient of the cross section distance between the object boundary points and the corresponding points in the model cross section boundary. The shape deformation distances measured in different cross sections are averaged and the minimum average shape deformation distance is used to identify the model best matching to the object of unknown classification.
© (1995) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Mehmet Celenk "Three-dimensional object surface matching", Proc. SPIE 2488, Visual Information Processing IV, (16 June 1995); https://doi.org/10.1117/12.211999
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
3D modeling

Binary data

3D image processing

Distance measurement

Computer simulations

Detection and tracking algorithms

3D image reconstruction

Back to Top