Paper
29 July 2002 Online ablation measurement for laser material processing and its applications
P. Klinger, Gerd Haeusler
Author Affiliations +
Proceedings Volume 4900, Seventh International Symposium on Laser Metrology Applied to Science, Industry, and Everyday Life; (2002) https://doi.org/10.1117/12.484557
Event: Seventh International Symposium on Laser Metrology Applied to Science, Industry, and Everyday Life, 2002, Novosibirsk, Russian Federation
Abstract
In Laser Material Processing, surfaces have to be measured at low apertures within the rough environment generated by the production process. As it is hardly possible to measure the material wear through the plasma at the working zone (at ternperatures above 3000 K), common sensors would have a quite poor performance. The ablation sensor presented in this paper solves that problem by utilising just the plasma spot emitting a signal from which we evaluate the distance between sensor and work piece. The specific features of this sensor are: the measurement is not distorted by coherent noise and is insensitive against the (strongly varying) spot size and shape. Hence, the sensor displays extreme accuracy, even with low aperture and in presence of strong turbulence. The achievable measurement on-line uncertainty within the ablation process is ? = 3 tm using a CO2-Laser. - A demand for even finer structures in laser ablation leads to a change from the Lasercaving process (using a CO2-laser) to an ablation by sublimation (using a Nd:YAG laser). The intention is to decrease the thickness of each ablated layer, and thus, generating finer structures. In order to keep the ablation rates at an economically interesting value, the speed between laser and work piece surface has to be increased. This new ablation process tightens the requirements for the sensor performance, even more. In the paper we will explain the basic ideas of the sensor as well as the technology of implementation and a couple of successful applications.
© (2002) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
P. Klinger and Gerd Haeusler "Online ablation measurement for laser material processing and its applications", Proc. SPIE 4900, Seventh International Symposium on Laser Metrology Applied to Science, Industry, and Everyday Life, (29 July 2002); https://doi.org/10.1117/12.484557
Lens.org Logo
CITATIONS
Cited by 2 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Sensors

Laser ablation

Distance measurement

Laser processing

Carbon dioxide lasers

Pulsed laser operation

Charge-coupled devices

RELATED CONTENT


Back to Top