Intensity imbalance between the 0 and π phase features of c:PSM cause gate CD control and edge placement problems. Strategies such as undercut, selective biasing, and combinations of undercut and bias are currently used in production to mitigate these problems. However, there are drawbacks to these strategies such as space CD delta through pitch, gate CD control through defocus, design rule restrictions, and reticle manufacturability. This paper investigates the application of an innovative films-based approach to intensity balancing known as the Transparent Etch Stop Layer (TESL). TESL, in addition to providing a host of reticle quality and manufacturability benefits, also can be tuned to significantly reduce imbalance. Rigorous 3D vector simulations and experimental data compare through pitch and defocus performance of TESL and conventional c:PSM for 65nm design rules.
|