Paper
14 February 2007 Optical parametric amplification of mid-infrared radiation using multi-layer glass-bonded QPM GaAs crystals
Brian J. Perrett, Paul D. Mason, Pamela A. Webber, Simon C. Woods, David A. Orchard
Author Affiliations +
Abstract
Non-linear optical wavelength conversion of near-infrared lasers within optical parametric oscillators (OPOs) offers a route to powerful tunable sources in the mid-infrared (mid-IR). Engineered quasi-phasematched (QPM) non-linear optical materials based on gallium arsenide (GaAs) offer an alternative to conventional birefringently phasematched single-crystal materials such as ZnGeP2, which are currently used in mid-IR OPOs. QPM GaAs crystals have been assembled from commercially available, high-optical quality 100-micron thickness gallium arsenide (GaAs) wafers using a novel glass-bonding (GB) process. This uses thin layers of an infrared transmitting glass (refractive index matched to GaAs) deposited onto each GaAs wafer, which, when heated under pressure, fuse the wafers together to form a monolithic structure. By varying the thickness of the deposited glass layers, the dispersion in the glass can be used to compensate for variations in GaAs wafer thickness and to fine tune the phasematching wavelengths of the QPM crystal. GBGaAs crystals with up to 100 layers have been designed and built for wavelength conversion from 2 &mgr;m into the mid-IR. We report the performance of these crystals used as optical parametric amplifiers (OPAs) in the mid-IR, when pumped by a 2.094 &mgr;m source, and compare these results to measurements for a ZGP OPA. In addition, the dependence of conversion within GBGaAs crystals on the polarisation state of the amplifier seed beam has been investigated along with the temperature dependence of the optimum operating wavelength. Good agreement between experimental results and performance predictions obtained from a numerical model is observed.
© (2007) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Brian J. Perrett, Paul D. Mason, Pamela A. Webber, Simon C. Woods, and David A. Orchard "Optical parametric amplification of mid-infrared radiation using multi-layer glass-bonded QPM GaAs crystals", Proc. SPIE 6455, Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications VI, 64550A (14 February 2007); https://doi.org/10.1117/12.698942
Lens.org Logo
CITATIONS
Cited by 2 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Crystals

Gallium arsenide

Mid-IR

Optical parametric oscillators

Semiconducting wafers

Glasses

Polarization

Back to Top