Paper
22 March 2007 GPU-based accelerated 2D and 3D FDTD solvers
Author Affiliations +
Abstract
Our group has employed the use of modern graphics processor units (GPUs) for the acceleration of finite-difference based computational electromagnetics (CEM) codes. In particular, we accelerated the well-known Finite-Difference Time-Domain (FDTD) method, which is commonly used for the analysis of electromagnetic phenomena. This algorithm uses difference-based approximations for Maxwell's Equations to simulate the propagation of electromagnetic fields through space and materials. The method is very general and is applicable to a wide array of problems, but runtimes can be very long so acceleration is highly desired. In this paper we present GPU-based accelerated solvers for the FDTD method in both its 2D and 3D embodiments.
© (2007) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Daniel K. Price, John R. Humphrey, and Eric J. Kelmelis "GPU-based accelerated 2D and 3D FDTD solvers", Proc. SPIE 6468, Physics and Simulation of Optoelectronic Devices XV, 646806 (22 March 2007); https://doi.org/10.1117/12.715044
Lens.org Logo
CITATIONS
Cited by 17 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Finite-difference time-domain method

Sensors

Visualization

Electromagnetism

Resonators

Scattering

Computational electromagnetics

Back to Top